BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 34916416)

  • 41. Transplantation of a Peripheral Nerve with Neural Stem Cells Plus Lithium Chloride Injection Promote the Recovery of Rat Spinal Cord Injury.
    Zhang LQ; Zhang WM; Deng L; Xu ZX; Lan WB; Lin JH
    Cell Transplant; 2018 Mar; 27(3):471-484. PubMed ID: 29756516
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Endogenous retinal neural stem cell reprogramming for neuronal regeneration.
    Madelaine R; Mourrain P
    Neural Regen Res; 2017 Nov; 12(11):1765-1767. PubMed ID: 29239312
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A cutting-edge strategy for spinal cord injury treatment: resident cellular transdifferentiation.
    Fang YM; Chen WC; Zheng WJ; Yang YS; Zhang Y; Chen XL; Pei MQ; Lin S; He HF
    Front Cell Neurosci; 2023; 17():1237641. PubMed ID: 37711511
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Role of endogenous Schwann cells in tissue repair after spinal cord injury.
    Zhang SX; Huang F; Gates M; Holmberg EG
    Neural Regen Res; 2013 Jan; 8(2):177-85. PubMed ID: 25206489
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Neurod1 mediates the reprogramming of NG2 glial into neurons in vitro.
    Wei M; Feng D; Lu Z; Hu Z; Wu H; Lian Y; Li D; Yan Z; Li Y; Wang X; Zhang H
    Gene Expr Patterns; 2023 Mar; 47():119305. PubMed ID: 36682427
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fgf2 improves functional recovery-decreasing gliosis and increasing radial glia and neural progenitor cells after spinal cord injury.
    Goldshmit Y; Frisca F; Pinto AR; Pébay A; Tang JK; Siegel AL; Kaslin J; Currie PD
    Brain Behav; 2014 Mar; 4(2):187-200. PubMed ID: 24683512
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A growing field: The regulation of axonal regeneration by Wnt signaling.
    Garcia AL; Udeh A; Kalahasty K; Hackam AS
    Neural Regen Res; 2018 Jan; 13(1):43-52. PubMed ID: 29451203
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Role and prospects of regenerative biomaterials in the repair of spinal cord injury.
    Liu S; Xie YY; Wang B
    Neural Regen Res; 2019 Aug; 14(8):1352-1363. PubMed ID: 30964053
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Don't fence me in: harnessing the beneficial roles of astrocytes for spinal cord repair.
    White RE; Jakeman LB
    Restor Neurol Neurosci; 2008; 26(2-3):197-214. PubMed ID: 18820411
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Systematic review of induced pluripotent stem cell technology as a potential clinical therapy for spinal cord injury.
    Kramer AS; Harvey AR; Plant GW; Hodgetts SI
    Cell Transplant; 2013; 22(4):571-617. PubMed ID: 22944020
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Targeted Inhibition of Leucine-Rich Repeat and Immunoglobulin Domain-Containing Protein 1 in Transplanted Neural Stem Cells Promotes Neuronal Differentiation and Functional Recovery in Rats Subjected to Spinal Cord Injury.
    Chen N; Cen JS; Wang J; Qin G; Long L; Wang L; Wei F; Xiang Q; Deng DY; Wan Y
    Crit Care Med; 2016 Mar; 44(3):e146-57. PubMed ID: 26491860
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Disease modifying treatment of spinal cord injury with directly reprogrammed neural precursor cells in non-human primates.
    Baklaushev VP; Durov OV; Kalsin VA; Gulaev EV; Kim SV; Gubskiy IL; Revkova VA; Samoilova EM; Melnikov PA; Karal-Ogly DD; Orlov SV; Troitskiy AV; Chekhonin VP; Averyanov AV; Ahlfors JE
    World J Stem Cells; 2021 May; 13(5):452-469. PubMed ID: 34136075
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The role of purinergic receptors in neural repair and regeneration after spinal cord injury.
    Cheng RD; Ren W; Luo BY; Ye XM
    Neural Regen Res; 2023 Aug; 18(8):1684-1690. PubMed ID: 36751780
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Extrinsic and intrinsic factors controlling axonal regeneration after spinal cord injury.
    Afshari FT; Kappagantula S; Fawcett JW
    Expert Rev Mol Med; 2009 Dec; 11():e37. PubMed ID: 19968910
    [TBL] [Abstract][Full Text] [Related]  

  • 55. New trend in neuroscience: low-power laser effect on peripheral and central nervous system (basic science, preclinical and clinical studies).
    Rochkind S; Ouaknine GE
    Neurol Res; 1992 Mar; 14(1):2-11. PubMed ID: 1351254
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Spinal motor neurite outgrowth over glial scar inhibitors is enhanced by coculture with bone marrow stromal cells.
    Wright KT; Uchida K; Bara JJ; Roberts S; El Masri W; Johnson WE
    Spine J; 2014 Aug; 14(8):1722-33. PubMed ID: 24462452
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Integration and long distance axonal regeneration in the central nervous system from transplanted primitive neural stem cells.
    Zhao J; Sun W; Cho HM; Ouyang H; Li W; Lin Y; Do J; Zhang L; Ding S; Liu Y; Lu P; Zhang K
    J Biol Chem; 2013 Jan; 288(1):164-8. PubMed ID: 23155053
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Stem cell transplantation for spinal cord injury repair.
    Lu P
    Prog Brain Res; 2017; 231():1-32. PubMed ID: 28554393
    [TBL] [Abstract][Full Text] [Related]  

  • 59.
    Talifu Z; Liu JY; Pan YZ; Ke H; Zhang CJ; Xu X; Gao F; Yu Y; Du LJ; Li JJ
    Neural Regen Res; 2023 Apr; 18(4):750-755. PubMed ID: 36204831
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of Proliferating Neural Progenitors after Spinal Cord Injury in Adult Zebrafish.
    Hui SP; Nag TC; Ghosh S
    PLoS One; 2015; 10(12):e0143595. PubMed ID: 26630262
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.