These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 34916587)

  • 21. Control of a 7-DOF Robotic Arm System With an SSVEP-Based BCI.
    Chen X; Zhao B; Wang Y; Xu S; Gao X
    Int J Neural Syst; 2018 Oct; 28(8):1850018. PubMed ID: 29768990
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Non-invasive brain-computer interface system: towards its application as assistive technology.
    Cincotti F; Mattia D; Aloise F; Bufalari S; Schalk G; Oriolo G; Cherubini A; Marciani MG; Babiloni F
    Brain Res Bull; 2008 Apr; 75(6):796-803. PubMed ID: 18394526
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Learning-based control approaches for service robots on cloth manipulation and dressing assistance: a comprehensive review.
    Nocentini O; Kim J; Bashir ZM; Cavallo F
    J Neuroeng Rehabil; 2022 Nov; 19(1):117. PubMed ID: 36329473
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Applications of brain-computer interfaces to the control of robotic and prosthetic arms.
    Vilela M; Hochberg LR
    Handb Clin Neurol; 2020; 168():87-99. PubMed ID: 32164870
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Communication and knowledge sharing in human-robot interaction and learning from demonstration.
    Koenig N; Takayama L; Matarić M
    Neural Netw; 2010; 23(8-9):1104-12. PubMed ID: 20598503
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combining brain-computer interfaces with deep reinforcement learning for robot training: a feasibility study in a simulation environment.
    Vukelić M; Bui M; Vorreuther A; Lingelbach K
    Front Neuroergon; 2023; 4():1274730. PubMed ID: 38234482
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A review of computer vision for semi-autonomous control of assistive robotic manipulators (ARMs).
    Bengtson SH; Bak T; Andreasen Struijk LNS; Moeslund TB
    Disabil Rehabil Assist Technol; 2020 Oct; 15(7):731-745. PubMed ID: 31268368
    [No Abstract]   [Full Text] [Related]  

  • 28. Autonomous function of wheelchair-mounted robotic manipulators to perform daily activities.
    Chung CS; Wang H; Cooper RA
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650378. PubMed ID: 24187197
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gesteme-free context-aware adaptation of robot behavior in human-robot cooperation.
    Nessi F; Beretta E; Gatti C; Ferrigno G; De Momi E
    Artif Intell Med; 2016 Nov; 74():32-43. PubMed ID: 27964801
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A new error-monitoring brain-computer interface based on reinforcement learning for people with autism spectrum disorders.
    Pires G; Cruz A; Jesus D; Yasemin M; Nunes UJ; Sousa T; Castelo-Branco M
    J Neural Eng; 2022 Dec; 19(6):. PubMed ID: 36541535
    [No Abstract]   [Full Text] [Related]  

  • 31. Inferring individual evaluation criteria for reaching trajectories with obstacle avoidance from EEG signals.
    Iwane F; Billard A; Millán JDR
    Sci Rep; 2023 Nov; 13(1):20163. PubMed ID: 37978205
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hybrid Brain-Computer-Interfacing for Human-Compliant Robots: Inferring Continuous Subjective Ratings With Deep Regression.
    Fiederer LDJ; Völker M; Schirrmeister RT; Burgard W; Boedecker J; Ball T
    Front Neurorobot; 2019; 13():76. PubMed ID: 31649523
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Robotic gaming prototype for upper limb exercise: Effects of age and embodiment on user preferences and movement.
    Eizicovits D; Edan Y; Tabak I; Levy-Tzedek S
    Restor Neurol Neurosci; 2018; 36(2):261-274. PubMed ID: 29526862
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Error-related EEG potentials generated during simulated brain-computer interaction.
    Ferrez PW; del R Millan J
    IEEE Trans Biomed Eng; 2008 Mar; 55(3):923-9. PubMed ID: 18334383
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Method for Bottle Opening with a Dual-Arm Robot.
    Naranjo-Campos FJ; Victores JG; Balaguer C
    Biomimetics (Basel); 2024 Sep; 9(9):. PubMed ID: 39329599
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Learning from demonstration: Teaching a myoelectric prosthesis with an intact limb via reinforcement learning.
    Vasan G; Pilarski PM
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1457-1464. PubMed ID: 28814025
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Proof of Concept of an Assistive Robotic Arm Control Using Artificial Stereovision and Eye-Tracking.
    Cio YL; Raison M; Leblond Menard C; Achiche S
    IEEE Trans Neural Syst Rehabil Eng; 2019 Dec; 27(12):2344-2352. PubMed ID: 31675337
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Learning latent actions to control assistive robots.
    Losey DP; Jeon HJ; Li M; Srinivasan K; Mandlekar A; Garg A; Bohg J; Sadigh D
    Auton Robots; 2022; 46(1):115-147. PubMed ID: 34366568
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Human-robot skills transfer interfaces for a flexible surgical robot.
    Calinon S; Bruno D; Malekzadeh MS; Nanayakkara T; Caldwell DG
    Comput Methods Programs Biomed; 2014 Sep; 116(2):81-96. PubMed ID: 24491285
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fuzzy Guided Autonomous Nursing Robot through Wireless Beacon Network.
    Narayanan KL; Krishnan RS; Son LH; Tung NT; Julie EG; Robinson YH; Kumar R; Gerogiannis VC
    Multimed Tools Appl; 2022; 81(3):3297-3325. PubMed ID: 34345198
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.