These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 34916587)
41. Intrinsic interactive reinforcement learning - Using error-related potentials for real world human-robot interaction. Kim SK; Kirchner EA; Stefes A; Kirchner F Sci Rep; 2017 Dec; 7(1):17562. PubMed ID: 29242555 [TBL] [Abstract][Full Text] [Related]
42. Blending of brain-machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping. Downey JE; Weiss JM; Muelling K; Venkatraman A; Valois JS; Hebert M; Bagnell JA; Schwartz AB; Collinger JL J Neuroeng Rehabil; 2016 Mar; 13():28. PubMed ID: 26987662 [TBL] [Abstract][Full Text] [Related]
43. Cross-Platform Implementation of an SSVEP-Based BCI for the Control of a 6-DOF Robotic Arm. Quiles E; Dadone J; Chio N; García E Sensors (Basel); 2022 Jul; 22(13):. PubMed ID: 35808498 [TBL] [Abstract][Full Text] [Related]
44. Human-to-Robot Handover Based on Reinforcement Learning. Kim M; Yang S; Kim B; Kim J; Kim D Sensors (Basel); 2024 Sep; 24(19):. PubMed ID: 39409314 [TBL] [Abstract][Full Text] [Related]
45. Whole-arm tactile sensing for beneficial and acceptable contact during robotic assistance. Grice PM; Killpack MD; Jain A; Vaish S; Hawke J; Kemp CC IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650464. PubMed ID: 24187281 [TBL] [Abstract][Full Text] [Related]
46. Functional assessment and performance evaluation for assistive robotic manipulators: Literature review. Chung CS; Wang H; Cooper RA J Spinal Cord Med; 2013 Jul; 36(4):273-89. PubMed ID: 23820143 [TBL] [Abstract][Full Text] [Related]
47. Electroencephalography(EEG)-based instinctive brain-control of a quadruped locomotion robot. Jia W; Huang D; Luo X; Pu H; Chen X; Bai O Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1777-81. PubMed ID: 23366255 [TBL] [Abstract][Full Text] [Related]
49. A Non-Linear Body Machine Interface for Controlling Assistive Robotic Arms. Rizzoglio F; Giordano M; Mussa-Ivaldi FA; Casadio M IEEE Trans Biomed Eng; 2023 Jul; 70(7):2149-2159. PubMed ID: 37021896 [TBL] [Abstract][Full Text] [Related]
50. Affective robot for elderly assistance. Carelli L; Gaggioli A; Pioggia G; De Rossi F; Riva G Stud Health Technol Inform; 2009; 144():44-9. PubMed ID: 19592728 [TBL] [Abstract][Full Text] [Related]
51. Biological Plausibility of Arm Postures Influences the Controllability of Robotic Arm Teleoperation. Mick S; Badets A; Oudeyer PY; Cattaert D; De Rugy A Hum Factors; 2022 Mar; 64(2):372-384. PubMed ID: 32809867 [TBL] [Abstract][Full Text] [Related]
52. A New Controller for a Smart Walker Based on Human-Robot Formation. Valadão C; Caldeira E; Bastos-Filho T; Frizera-Neto A; Carelli R Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27447634 [TBL] [Abstract][Full Text] [Related]
53. Learning-based personalisation of robot behaviour for robot-assisted therapy. Stolarz M; Mitrevski A; Wasil M; Plöger PG Front Robot AI; 2024; 11():1352152. PubMed ID: 38651054 [TBL] [Abstract][Full Text] [Related]
54. Optimized Assistive Human-Robot Interaction Using Reinforcement Learning. Modares H; Ranatunga I; Lewis FL; Popa DO IEEE Trans Cybern; 2016 Mar; 46(3):655-67. PubMed ID: 25823055 [TBL] [Abstract][Full Text] [Related]
55. Performance evaluation of 3D vision-based semi-autonomous control method for assistive robotic manipulator. Ka HW; Chung CS; Ding D; James K; Cooper R Disabil Rehabil Assist Technol; 2018 Feb; 13(2):140-145. PubMed ID: 28326859 [TBL] [Abstract][Full Text] [Related]
56. Using reinforcement learning to provide stable brain-machine interface control despite neural input reorganization. Pohlmeyer EA; Mahmoudi B; Geng S; Prins NW; Sanchez JC PLoS One; 2014; 9(1):e87253. PubMed ID: 24498055 [TBL] [Abstract][Full Text] [Related]
57. Assisting drinking with an affordable BCI-controlled wearable robot and electrical stimulation: a preliminary investigation. Looned R; Webb J; Xiao ZG; Menon C J Neuroeng Rehabil; 2014 Apr; 11():51. PubMed ID: 24708603 [TBL] [Abstract][Full Text] [Related]
58. Goal-recognition-based adaptive brain-computer interface for navigating immersive robotic systems. Abu-Alqumsan M; Ebert F; Peer A J Neural Eng; 2017 Jun; 14(3):036024. PubMed ID: 28294109 [TBL] [Abstract][Full Text] [Related]
59. Visual Sensor Fusion Based Autonomous Robotic System for Assistive Drinking. Try P; Schöllmann S; Wöhle L; Gebhard M Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450861 [TBL] [Abstract][Full Text] [Related]
60. Preliminary results of BRAVO project: brain computer interfaces for Robotic enhanced Action in Visuo-motOr tasks. Bergamasco M; Frisoli A; Fontana M; Loconsole C; Leonardis D; Troncossi M; Foumashi MM; Parenti-Castelli V IEEE Int Conf Rehabil Robot; 2011; 2011():5975377. PubMed ID: 22275581 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]