These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 34917305)

  • 1. Compressed Sensing Image Reconstruction of Ultrasound Image for Treatment of Early Traumatic Myositis Ossificans of Elbow Joint by Electroacupuncture.
    Zhu Y; Sheng M; Ouyang Y; Zhong L; Liu K; Ge T; Wu Y
    J Healthc Eng; 2021; 2021():4066415. PubMed ID: 34917305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasound Plane-Wave Compressed Sensing Reconstruction Method Using Intra-frame and Inter-frame Joint Multi-hypothesis and Reference Frame Multi-hypothesis Predictions.
    Tong L; Wang P; Li X; Li Q; Chen J; Shen Y
    Ultrasound Med Biol; 2024 Jan; 50(1):77-90. PubMed ID: 37845111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Step adaptive fast iterative shrinkage thresholding algorithm for compressively sampled MR imaging reconstruction.
    Wang W; Cao N
    Magn Reson Imaging; 2018 Nov; 53():89-97. PubMed ID: 29886107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Brain functional network reconstruction based on compressed sensing and fast iterative shrinkage-thresholding algorithm].
    Guo Q; Teng Y; Tong C; Li D; Wang X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Oct; 37(5):855-862. PubMed ID: 33140610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstruction of compressively sampled MR images based on a local shrinkage thresholding algorithm with curvelet transform.
    Wang H; Zhou Y; Wu X; Wang W; Yao Q
    Med Biol Eng Comput; 2019 Oct; 57(10):2145-2158. PubMed ID: 31377962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerated fast iterative shrinkage thresholding algorithms for sparsity-regularized cone-beam CT image reconstruction.
    Xu Q; Yang D; Tan J; Sawatzky A; Anastasio MA
    Med Phys; 2016 Apr; 43(4):1849. PubMed ID: 27036582
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast compressed sensing-based CBCT reconstruction using Barzilai-Borwein formulation for application to on-line IGRT.
    Park JC; Song B; Kim JS; Park SH; Kim HK; Liu Z; Suh TS; Song WY
    Med Phys; 2012 Mar; 39(3):1207-17. PubMed ID: 22380351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Faster and More Accurate Iterative Threshold Algorithm for Signal Reconstruction in Compressed Sensing.
    Wei J; Mao S; Dai J; Wang Z; Huang W; Yu Y
    Sensors (Basel); 2022 Jun; 22(11):. PubMed ID: 35684839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporation of local dependent reliability information into the Prior Image Constrained Compressed Sensing (PICCS) reconstruction algorithm.
    Vaegler S; Stsepankou D; Hesser J; Sauer O
    Z Med Phys; 2015 Dec; 25(4):375-390. PubMed ID: 26422578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Compressively sampled MR image reconstruction using generalized thresholding iterative algorithm.
    Elahi S; Kaleem M; Omer H
    J Magn Reson; 2018 Jan; 286():91-98. PubMed ID: 29223565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure assisted compressed sensing reconstruction of undersampled AFM images.
    Oxvig CS; Arildsen T; Larsen T
    Ultramicroscopy; 2017 Jan; 172():1-9. PubMed ID: 27721127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prior data assisted compressed sensing: a novel MR imaging strategy for real time tracking of lung tumors.
    Yip E; Yun J; Wachowicz K; Heikal AA; Gabos Z; Rathee S; Fallone BG
    Med Phys; 2014 Aug; 41(8):082301. PubMed ID: 25086550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research on Blind Super-Resolution Technology for Infrared Images of Power Equipment Based on Compressed Sensing Theory.
    Wang Y; Wang L; Liu B; Zhao H
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34203747
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved digital chest tomosynthesis image quality by use of a projection-based dual-energy virtual monochromatic convolutional neural network with super resolution.
    Gomi T; Hara H; Watanabe Y; Mizukami S
    PLoS One; 2020; 15(12):e0244745. PubMed ID: 33382766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adjustable shrinkage-thresholding projection algorithm for compressed sensing magnetic resonance imaging.
    Lang J; Gang K; Zhang C
    Magn Reson Imaging; 2022 Feb; 86():74-85. PubMed ID: 34856329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Texture Image Classification Method of Porcelain Fragments Based on Convolutional Neural Network.
    Wu H
    Comput Intell Neurosci; 2021; 2021():1823930. PubMed ID: 34306048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A high frequency endoscopic ultrasound imaging method combining chirp coded excitation and compressed sensing.
    Wang N; Li X; Xu J; Jiao Y; Cui Y; Jian X
    Ultrasonics; 2022 Apr; 121():106669. PubMed ID: 35007837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deterministic compressive sampling for high-quality image reconstruction of ultrasound tomography.
    Huy TQ; Tue HH; Long TT; Duc-Tan T
    BMC Med Imaging; 2017 May; 17(1):34. PubMed ID: 28545406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resolution evaluation of MR images reconstructed by iterative thresholding algorithms for compressed sensing.
    Wech T; Stab D; Budich JC; Fischer A; Tran-Gia J; Hahn D; Kostler H
    Med Phys; 2012 Jul; 39(7):4328-38. PubMed ID: 22830766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Resolution Ultrasound Imaging Enabled by Random Interference and Joint Image Reconstruction.
    Ni P; Lee HN
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33187144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.