These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

500 related articles for article (PubMed ID: 34917332)

  • 21. Engineering mechanobiology through organoids-on-chip: A strategy to boost therapeutics.
    Charelli LE; Ferreira JPD; Naveira-Cotta CP; Balbino TA
    J Tissue Eng Regen Med; 2021 Nov; 15(11):883-899. PubMed ID: 34339588
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microfluidic 'brain-on chip' systems to supplement neurological practice: development, applications and considerations.
    Jarrah R; Nathani KR; Bhandarkar S; Ezeudu CS; Nguyen RT; Amare A; Aljameey UA; Jarrah SI; Bhandarkar AR; Fiani B
    Regen Med; 2023 May; 18(5):413-423. PubMed ID: 37125510
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication of Biomaterials and Biostructures Based On Microfluidic Manipulation.
    Zheng W; Xie R; Liang X; Liang Q
    Small; 2022 Apr; 18(16):e2105867. PubMed ID: 35072338
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rapid Prototyping of Multilayer Microphysiological Systems.
    Hosic S; Bindas AJ; Puzan ML; Lake W; Soucy JR; Zhou F; Koppes RA; Breault DT; Murthy SK; Koppes AN
    ACS Biomater Sci Eng; 2021 Jul; 7(7):2949-2963. PubMed ID: 34275297
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Skin-on-a-Chip Technology: Microengineering Physiologically Relevant In Vitro Skin Models.
    Zoio P; Oliva A
    Pharmaceutics; 2022 Mar; 14(3):. PubMed ID: 35336056
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Developmentally inspired human 'organs on chips'.
    Ingber DE
    Development; 2018 May; 145(16):. PubMed ID: 29776965
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modular automated microfluidic cell culture platform reduces glycolytic stress in cerebral cortex organoids.
    Seiler ST; Mantalas GL; Selberg J; Cordero S; Torres-Montoya S; Baudin PV; Ly VT; Amend F; Tran L; Hoffman RN; Rolandi M; Green RE; Haussler D; Salama SR; Teodorescu M
    Sci Rep; 2022 Nov; 12(1):20173. PubMed ID: 36418910
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrative Utilization of Microenvironments, Biomaterials and Computational Techniques for Advanced Tissue Engineering.
    Shamloo A; Mohammadaliha N; Mohseni M
    J Biotechnol; 2015 Oct; 212():71-89. PubMed ID: 26281975
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D Bioprinted Hydrogel Microfluidic Devices for Parallel Drug Screening.
    Bhusal A; Dogan E; Nieto D; Mousavi Shaegh SA; Cecen B; Miri AK
    ACS Appl Bio Mater; 2022 Aug; ():. PubMed ID: 36037061
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biofabrication Using Electrochemical Devices and Systems.
    Ino K; Ozawa F; Dang N; Hiramoto K; Hino S; Akasaka R; Nashimoto Y; Shiku H
    Adv Biosyst; 2020 Apr; 4(4):e1900234. PubMed ID: 32293161
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pancreatic islet organoids-on-a-chip: how far have we gone?
    Yin J; Meng H; Lin J; Ji W; Xu T; Liu H
    J Nanobiotechnology; 2022 Jun; 20(1):308. PubMed ID: 35764957
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent Advances in Microfluidic Platforms for Programming Cell-Based Living Materials.
    Zhang P; Shao N; Qin L
    Adv Mater; 2021 Nov; 33(46):e2005944. PubMed ID: 34270839
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The crossing and integration between microfluidic technology and 3D printing for organ-on-chips.
    Mi S; Du Z; Xu Y; Sun W
    J Mater Chem B; 2018 Oct; 6(39):6191-6206. PubMed ID: 32254609
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fitting tissue chips and microphysiological systems into the grand scheme of medicine, biology, pharmacology, and toxicology.
    Watson DE; Hunziker R; Wikswo JP
    Exp Biol Med (Maywood); 2017 Oct; 242(16):1559-1572. PubMed ID: 29065799
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Musculoskeletal tissues-on-a-chip: role of natural polymers in reproducing tissue-specific microenvironments.
    Petta D; D'Amora U; D'Arrigo D; Tomasini M; Candrian C; Ambrosio L; Moretti M
    Biofabrication; 2022 Aug; 14(4):. PubMed ID: 35931043
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Vascularized microfluidic platforms to mimic the tumor microenvironment.
    Michna R; Gadde M; Ozkan A; DeWitt M; Rylander M
    Biotechnol Bioeng; 2018 Nov; 115(11):2793-2806. PubMed ID: 29940072
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Microfluidics for Neuronal Cell and Circuit Engineering.
    Habibey R; Rojo Arias JE; Striebel J; Busskamp V
    Chem Rev; 2022 Sep; 122(18):14842-14880. PubMed ID: 36070858
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Merging organoid and organ-on-a-chip technology to generate complex multi-layer tissue models in a human retina-on-a-chip platform.
    Achberger K; Probst C; Haderspeck J; Bolz S; Rogal J; Chuchuy J; Nikolova M; Cora V; Antkowiak L; Haq W; Shen N; Schenke-Layland K; Ueffing M; Liebau S; Loskill P
    Elife; 2019 Aug; 8():. PubMed ID: 31451149
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A controllable perfusion microfluidic chip for facilitating the development of retinal ganglion cells in human retinal organoids.
    Gong J; Gong Y; Zou T; Zeng Y; Yang C; Mo L; Kang J; Fan X; Xu H; Yang J
    Lab Chip; 2023 Aug; 23(17):3820-3836. PubMed ID: 37496497
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physiologically relevant organs on chips.
    Yum K; Hong SG; Healy KE; Lee LP
    Biotechnol J; 2014 Jan; 9(1):16-27. PubMed ID: 24357624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.