These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

414 related articles for article (PubMed ID: 34917332)

  • 41. Pancreatic islet organoids-on-a-chip: how far have we gone?
    Yin J; Meng H; Lin J; Ji W; Xu T; Liu H
    J Nanobiotechnology; 2022 Jun; 20(1):308. PubMed ID: 35764957
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Integrative Utilization of Microenvironments, Biomaterials and Computational Techniques for Advanced Tissue Engineering.
    Shamloo A; Mohammadaliha N; Mohseni M
    J Biotechnol; 2015 Oct; 212():71-89. PubMed ID: 26281975
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A review on current brain organoid technologies from a biomedical engineering perspective.
    Lokai T; Albin B; Qubbaj K; Tiwari AP; Adhikari P; Yang IH
    Exp Neurol; 2023 Sep; 367():114461. PubMed ID: 37295544
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biosensors integrated 3D organoid/organ-on-a-chip system: A real-time biomechanical, biophysical, and biochemical monitoring and characterization.
    Liu S; Kumari S; He H; Mishra P; Singh BN; Singh D; Liu S; Srivastava P; Li C
    Biosens Bioelectron; 2023 Jul; 231():115285. PubMed ID: 37058958
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biofabrication Using Electrochemical Devices and Systems.
    Ino K; Ozawa F; Dang N; Hiramoto K; Hino S; Akasaka R; Nashimoto Y; Shiku H
    Adv Biosyst; 2020 Apr; 4(4):e1900234. PubMed ID: 32293161
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microfluidics for Neuronal Cell and Circuit Engineering.
    Habibey R; Rojo Arias JE; Striebel J; Busskamp V
    Chem Rev; 2022 Sep; 122(18):14842-14880. PubMed ID: 36070858
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bioengineering tissue morphogenesis and function in human neural organoids.
    Fedorchak NJ; Iyer N; Ashton RS
    Semin Cell Dev Biol; 2021 Mar; 111():52-59. PubMed ID: 32540123
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bioengineering methods for vascularizing organoids.
    Nwokoye PN; Abilez OJ
    Cell Rep Methods; 2024 Jun; 4(6):100779. PubMed ID: 38759654
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recent Advances in Microfluidic Platforms for Programming Cell-Based Living Materials.
    Zhang P; Shao N; Qin L
    Adv Mater; 2021 Nov; 33(46):e2005944. PubMed ID: 34270839
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The crossing and integration between microfluidic technology and 3D printing for organ-on-chips.
    Mi S; Du Z; Xu Y; Sun W
    J Mater Chem B; 2018 Oct; 6(39):6191-6206. PubMed ID: 32254609
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Toward the next generation of vascularized human neural organoids.
    Li M; Gao L; Zhao L; Zou T; Xu H
    Med Res Rev; 2023 Jan; 43(1):31-54. PubMed ID: 35993813
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Musculoskeletal tissues-on-a-chip: role of natural polymers in reproducing tissue-specific microenvironments.
    Petta D; D'Amora U; D'Arrigo D; Tomasini M; Candrian C; Ambrosio L; Moretti M
    Biofabrication; 2022 Aug; 14(4):. PubMed ID: 35931043
    [TBL] [Abstract][Full Text] [Related]  

  • 53. 3D Printing Techniques and Their Applications to Organ-on-a-Chip Platforms: A Systematic Review.
    Carvalho V; Gonçalves I; Lage T; Rodrigues RO; Minas G; Teixeira SFCF; Moita AS; Hori T; Kaji H; Lima RA
    Sensors (Basel); 2021 May; 21(9):. PubMed ID: 34068811
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A controllable perfusion microfluidic chip for facilitating the development of retinal ganglion cells in human retinal organoids.
    Gong J; Gong Y; Zou T; Zeng Y; Yang C; Mo L; Kang J; Fan X; Xu H; Yang J
    Lab Chip; 2023 Aug; 23(17):3820-3836. PubMed ID: 37496497
    [TBL] [Abstract][Full Text] [Related]  

  • 55. 3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs.
    Knowlton S; Yu CH; Ersoy F; Emadi S; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):025019. PubMed ID: 27321481
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Physiologically relevant organs on chips.
    Yum K; Hong SG; Healy KE; Lee LP
    Biotechnol J; 2014 Jan; 9(1):16-27. PubMed ID: 24357624
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Fitting tissue chips and microphysiological systems into the grand scheme of medicine, biology, pharmacology, and toxicology.
    Watson DE; Hunziker R; Wikswo JP
    Exp Biol Med (Maywood); 2017 Oct; 242(16):1559-1572. PubMed ID: 29065799
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microfluidic Brain-on-a-Chip: From Key Technology to System Integration and Application.
    Wang Z; Zhang Y; Li Z; Wang H; Li N; Deng Y
    Small; 2023 Dec; 19(52):e2304427. PubMed ID: 37653590
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Advances in tissue engineering of vasculature through three-dimensional bioprinting.
    Zhu J; Wang Y; Zhong L; Pan F; Wang J
    Dev Dyn; 2021 Dec; 250(12):1717-1738. PubMed ID: 34115420
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Vascularized microfluidic platforms to mimic the tumor microenvironment.
    Michna R; Gadde M; Ozkan A; DeWitt M; Rylander M
    Biotechnol Bioeng; 2018 Nov; 115(11):2793-2806. PubMed ID: 29940072
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.