These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34917710)

  • 1. An
    Laurence DW; Lee CH; Johnson EL; Hsu MC
    Data Brief; 2021 Dec; 39():107664. PubMed ID: 34917710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bayesian Optimization-Based Inverse Finite Element Analysis for Atrioventricular Heart Valves.
    Ross CJ; Laurence DW; Aggarwal A; Hsu MC; Mir A; Burkhart HM; Lee CH
    Ann Biomed Eng; 2024 Mar; 52(3):611-626. PubMed ID: 37989903
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite element investigation of stentless pericardial aortic valves: relevance of leaflet geometry.
    Xiong FL; Goetz WA; Chong CK; Chua YL; Pfeifer S; Wintermantel E; Yeo JH
    Ann Biomed Eng; 2010 May; 38(5):1908-18. PubMed ID: 20213213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tricuspid valve leaflet strains in the beating ovine heart.
    Mathur M; Jazwiec T; Meador WD; Malinowski M; Goehler M; Ferguson H; Timek TA; Rausch MK
    Biomech Model Mechanobiol; 2019 Oct; 18(5):1351-1361. PubMed ID: 30980211
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Source codes and simulation data for the finite element implementation of the conventional and localizing gradient damage methods in ABAQUS.
    Sarkar S; Singh IV; Mishra BK; Shedbale AS; Poh LH
    Data Brief; 2019 Oct; 26():104533. PubMed ID: 31667295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isogeometric finite element-based simulation of the aortic heart valve: Integration of neural network structural material model and structural tensor fiber architecture representations.
    Zhang W; Rossini G; Kamensky D; Bui-Thanh T; Sacks MS
    Int J Numer Method Biomed Eng; 2021 Apr; 37(4):e3438. PubMed ID: 33463004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stent and leaflet stresses in a 26-mm first-generation balloon-expandable transcatheter aortic valve.
    Xuan Y; Krishnan K; Ye J; Dvir D; Guccione JM; Ge L; Tseng EE
    J Thorac Cardiovasc Surg; 2017 May; 153(5):1065-1073. PubMed ID: 28108064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of a Transcatheter Tricuspid Valve Prosthesis Through Steps of Iterative Optimization and Finite Element Analysis.
    Pott D; Kütting M; Zhong Z; Amerini A; Spillner J; Autschbach R; Steinseifer U
    Artif Organs; 2015 Oct; 39(10):903-15. PubMed ID: 26378868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupled porohyperelastic mass transport (PHEXPT) finite element models for soft tissues using ABAQUS.
    Vande Geest JP; Simon BR; Rigby PH; Newberg TP
    J Biomech Eng; 2011 Apr; 133(4):044502. PubMed ID: 21428686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving finite element results in modeling heart valve mechanics.
    Earl E; Mohammadi H
    Proc Inst Mech Eng H; 2018 Jul; 232(7):718-725. PubMed ID: 29879869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of a three-dimensional, saddle-shaped annulus on anterior and posterior leaflet stretch and regurgitation of the tricuspid valve.
    Spinner EM; Buice D; Yap CH; Yoganathan AP
    Ann Biomed Eng; 2012 May; 40(5):996-1005. PubMed ID: 22130636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advanced modeling strategy for the analysis of heart valve leaflet tissue mechanics using high-order finite element method.
    Mohammadi H; Bahramian F; Wan W
    Med Eng Phys; 2009 Nov; 31(9):1110-7. PubMed ID: 19773193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Papillary muscle force distribution after total tricuspid reconstruction using porcine extracellular matrix: in-vitro valve characterization.
    Ropcke DM; Jensen MO; Jensen H; Hejslet T; Nielsen SL
    J Heart Valve Dis; 2014 Nov; 23(6):788-94. PubMed ID: 25790629
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical implications of the congenital bicuspid aortic valve: a finite element study of aortic root function from in vivo data.
    Conti CA; Della Corte A; Votta E; Del Viscovo L; Bancone C; De Santo LS; Redaelli A
    J Thorac Cardiovasc Surg; 2010 Oct; 140(4):890-6, 896.e1-2. PubMed ID: 20363481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tricuspid valve biopsy: a potential source of cardiac myofibroblast cells for tissue-engineered cardiac valves.
    Maish MS; Hoffman-Kim D; Krueger PM; Souza JM; Harper JJ; Hopkins RA
    J Heart Valve Dis; 2003 Mar; 12(2):264-9. PubMed ID: 12701801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computational multi-scale approach to investigate mechanically-induced changes in tricuspid valve anterior leaflet microstructure.
    Thomas VS; Lai V; Amini R
    Acta Biomater; 2019 Aug; 94():524-535. PubMed ID: 31229629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multiscale computational comparison of the bicuspid and tricuspid aortic valves in relation to calcific aortic stenosis.
    Weinberg EJ; Kaazempur Mofrad MR
    J Biomech; 2008 Dec; 41(16):3482-7. PubMed ID: 18996528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic impact stress analysis of a bileaflet mechanical heart valve.
    Yuan Q; Xu L; Ngoi BK; Yeo TJ; Hwang NH
    J Heart Valve Dis; 2003 Jan; 12(1):102-9. PubMed ID: 12578344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic analysis of the aortic valve using a finite element model.
    Gnyaneshwar R; Kumar RK; Balakrishnan KR
    Ann Thorac Surg; 2002 Apr; 73(4):1122-9. PubMed ID: 11996252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element modeling of mitral valve dynamic deformation using patient-specific multi-slices computed tomography scans.
    Wang Q; Sun W
    Ann Biomed Eng; 2013 Jan; 41(1):142-53. PubMed ID: 22805982
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.