These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 34917758)

  • 1. Metaproteomics of the human gut microbiota: Challenges and contributions to other OMICS.
    Issa Isaac N; Philippe D; Nicholas A; Raoult D; Eric C
    Clin Mass Spectrom; 2019 Sep; 14 Pt A():18-30. PubMed ID: 34917758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metaproteomics as a Complementary Approach to Gut Microbiota in Health and Disease.
    Petriz BA; Franco OL
    Front Chem; 2017; 5():4. PubMed ID: 28184370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Microbial metaproteomics--From sample processing to data acquisition and analysis].
    Wu EH; Qiao L
    Se Pu; 2024 Jul; 42(7):658-668. PubMed ID: 38966974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metaproteomics: A strategy to study the taxonomy and functionality of the gut microbiota.
    Wang Y; Zhou Y; Xiao X; Zheng J; Zhou H
    J Proteomics; 2020 May; 219():103737. PubMed ID: 32198072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utility of Conventional Culture and MALDI-TOF MS for Identification of Microbial Communities in Bronchoalveolar Lavage Fluid in Comparison with the GS Junior Next Generation Sequencing System.
    Sung JY; Hwang Y; Shin MH; Park MS; Lee SH; Yong D; Lee K
    Ann Lab Med; 2018 Mar; 38(2):110-118. PubMed ID: 29214754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data-Independent Acquisition Mass Spectrometry in Metaproteomics of Gut Microbiota-Implementation and Computational Analysis.
    Aakko J; Pietilä S; Suomi T; Mahmoudian M; Toivonen R; Kouvonen P; Rokka A; Hänninen A; Elo LL
    J Proteome Res; 2020 Jan; 19(1):432-436. PubMed ID: 31755272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Data-Independent Acquisition Mass Spectrometry as a Tool for Metaproteomics: Interlaboratory Comparison Using a Model Microbiome.
    Rajczewski AT; Blakeley-Ruiz JA; Meyer A; Vintila S; McIlvin MR; Van Den Bossche T; Searle BC; Griffin TJ; Saito MA; Kleiner M; Jagtap PD
    bioRxiv; 2024 Sep; ():. PubMed ID: 39345414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MetaProClust-MS1: an MS1 Profiling Approach for Large-Scale Microbiome Screening.
    Simopoulos CMA; Ning Z; Li L; Khamis MM; Zhang X; Lavallée-Adam M; Figeys D
    mSystems; 2022 Aug; 7(4):e0038122. PubMed ID: 35950762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metaproteomic analysis of human gut microbiota: where are we heading?
    Lee PY; Chin SF; Neoh HM; Jamal R
    J Biomed Sci; 2017 Jun; 24(1):36. PubMed ID: 28606141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gut-Brain Axis and Neurodegeneration: State-of-the-Art of Meta-Omics Sciences for Microbiota Characterization.
    Tilocca B; Pieroni L; Soggiu A; Britti D; Bonizzi L; Roncada P; Greco V
    Int J Mol Sci; 2020 Jun; 21(11):. PubMed ID: 32516966
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benchmarking low- and high-throughput protein cleanup and digestion methods for human fecal metaproteomics.
    Tanca A; Deledda MA; De Diego L; Abbondio M; Uzzau S
    mSystems; 2024 Jul; 9(7):e0066124. PubMed ID: 38934547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gut Microbiome Proteomics in Food Allergies.
    Abril AG; Carrera M; Sánchez-Pérez Á; Villa TG
    Int J Mol Sci; 2023 Jan; 24(3):. PubMed ID: 36768555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metaproteomic Analysis of Microbial Communities Affecting Fishery Products.
    Abril AG; Calo-Mata P; Barros-Velázquez J; Villa TG; Pazos M; Carrera M
    Methods Mol Biol; 2024; 2820():89-98. PubMed ID: 38941017
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The application of omics techniques to understand the role of the gut microbiota in inflammatory bowel disease.
    Segal JP; Mullish BH; Quraishi MN; Acharjee A; Williams HRT; Iqbal T; Hart AL; Marchesi JR
    Therap Adv Gastroenterol; 2019; 12():1756284818822250. PubMed ID: 30719076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Determination of peptide and protein diversity in venom of the spider Selenocosmia jiafu by high performance liquid chromatography and mass spectrometry].
    Hu Z; Xiao Z; Zhou X; Chen J; Chen B; Liu Z
    Se Pu; 2015 Jun; 33(6):628-33. PubMed ID: 26536766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "Polymeromics": Mass spectrometry based strategies in polymer science toward complete sequencing approaches: a review.
    Altuntaş E; Schubert US
    Anal Chim Acta; 2014 Jan; 808():56-69. PubMed ID: 24370093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increasing taxonomic and functional characterization of host-microbiome interactions by DIA-PASEF metaproteomics.
    Gómez-Varela D; Xian F; Grundtner S; Sondermann JR; Carta G; Schmidt M
    Front Microbiol; 2023; 14():1258703. PubMed ID: 37908546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metaproteomic strategies and applications for gut microbial research.
    Xiao M; Yang J; Feng Y; Zhu Y; Chai X; Wang Y
    Appl Microbiol Biotechnol; 2017 Apr; 101(8):3077-3088. PubMed ID: 28293710
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sample Processing for Metaproteomic Analysis of Human Gut Microbiota.
    García-Durán C; Martínez-López R; Monteoliva L; Gil C
    Methods Mol Biol; 2022; 2420():53-61. PubMed ID: 34905165
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 19.