These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 34917811)
1. Waste to energy: An experimental study of utilizing the agricultural residue, MSW, and e-waste available in Bangladesh for pyrolysis conversion. Islam MK; Khatun MS; Arefin MA; Islam MR; Hassan M Heliyon; 2021 Dec; 7(12):e08530. PubMed ID: 34917811 [TBL] [Abstract][Full Text] [Related]
2. Assessment of pyrolysis potential of Indian municipal solid waste and legacy waste via physicochemical and thermochemical characterization. Saikia S; Kalamdhad AS Bioresour Technol; 2024 Feb; 394():130289. PubMed ID: 38181997 [TBL] [Abstract][Full Text] [Related]
3. Pyrolytic Conversion of Plastic Waste to Value-Added Products and Fuels: A Review. Papari S; Bamdad H; Berruti F Materials (Basel); 2021 May; 14(10):. PubMed ID: 34065677 [TBL] [Abstract][Full Text] [Related]
4. Waste tire pyrolysis and desulfurization of tire pyrolytic oil (TPO) - A review. Mello M; Rutto H; Seodigeng T J Air Waste Manag Assoc; 2023 Mar; 73(3):159-177. PubMed ID: 36269581 [TBL] [Abstract][Full Text] [Related]
5. Seasonal characterization of municipal solid waste for selecting feasible waste treatment technology for Guwahati city, India. Singhal A; Gupta AK; Dubey B; Ghangrekar MM J Air Waste Manag Assoc; 2022 Feb; 72(2):147-160. PubMed ID: 34554054 [TBL] [Abstract][Full Text] [Related]
6. Pyrolysis of wastewater sludge and composted organic fines from municipal solid waste: laboratory reactor characterisation and product distribution. Agar DA; Kwapinska M; Leahy JJ Environ Sci Pollut Res Int; 2018 Dec; 25(36):35874-35882. PubMed ID: 29484618 [TBL] [Abstract][Full Text] [Related]
7. COVID-19 mask waste to energy via thermochemical pathway: Effect of Co-Feeding food waste. Park C; Choi H; Andrew Lin KY; Kwon EE; Lee J Energy (Oxf); 2021 Sep; 230():120876. PubMed ID: 33994654 [TBL] [Abstract][Full Text] [Related]
8. Pyrolysis kinetics and potential utilization analysis of cereal biomass by-products; an experimental analysis for cleaner energy productions in India. Chakravarty KH; Sadi M; Chakravarty H; Andersen J; Choudhury B; Howard TJ; Arabkoohsar A Chemosphere; 2024 Apr; 353():141420. PubMed ID: 38378051 [TBL] [Abstract][Full Text] [Related]
9. Feasibility study for thermal treatment of solid tire wastes in Bangladesh by using pyrolysis technology. Islam MR; Joardder MU; Hasan SM; Takai K; Haniu H Waste Manag; 2011; 31(9-10):2142-9. PubMed ID: 21680169 [TBL] [Abstract][Full Text] [Related]
10. Kinetic study of solid waste pyrolysis using distributed activation energy model. Bhavanam A; Sastry RC Bioresour Technol; 2015 Feb; 178():126-131. PubMed ID: 25455087 [TBL] [Abstract][Full Text] [Related]
11. Thermogravimetric and calorimetric characteristics during co-pyrolysis of municipal solid waste components. Ansah E; Wang L; Shahbazi A Waste Manag; 2016 Oct; 56():196-206. PubMed ID: 27324928 [TBL] [Abstract][Full Text] [Related]
12. Numerical and experimental analysis of pyrolysis process of RDF containing a high percentage of plastic waste. Zajemska M; Magdziarz A; Iwaszko J; Skrzyniarz M; Poskart A Fuel (Lond); 2022 Jul; 320():123981. PubMed ID: 36000017 [TBL] [Abstract][Full Text] [Related]
13. MSW pyrolysis volatiles' reforming by incineration fly ash for both pyrolysis products upgrading and fly ash stabilization. Tang Y; Chen D; Feng Y; Hu Y; Yin L; Qian K; Yuan G; Zhang R Chemosphere; 2023 Feb; 313():137536. PubMed ID: 36528161 [TBL] [Abstract][Full Text] [Related]
14. Production of third generation bio-fuel through thermal cracking process by utilizing Covid-19 plastic wastes. Ramalingam S; Thamizhvel R; Sudagar S; Silambarasan R Mater Today Proc; 2023; 72():1618-1623. PubMed ID: 36213622 [TBL] [Abstract][Full Text] [Related]
15. Evaluation of change in biochar properties derived from different feedstock and pyrolysis temperature for environmental and agricultural application. Pariyar P; Kumari K; Jain MK; Jadhao PS Sci Total Environ; 2020 Apr; 713():136433. PubMed ID: 31954240 [TBL] [Abstract][Full Text] [Related]
16. Classification and comparison of municipal solid waste based on thermochemical characteristics. Zhou H; Meng A; Long Y; Li Q; Zhang Y J Air Waste Manag Assoc; 2014 May; 64(5):597-616. PubMed ID: 24941708 [TBL] [Abstract][Full Text] [Related]
17. Effective deoxygenation for the production of liquid biofuels via microwave assisted co-pyrolysis of agro residues and waste plastics combined with catalytic upgradation. Suriapparao DV; Vinu R; Shukla A; Haldar S Bioresour Technol; 2020 Apr; 302():122775. PubMed ID: 31986334 [TBL] [Abstract][Full Text] [Related]
18. Pyrolysis and Gasification of a Real Refuse-Derived Fuel (RDF): The Potential Use of the Products under a Circular Economy Vision. Alfè M; Gargiulo V; Porto M; Migliaccio R; Le Pera A; Sellaro M; Pellegrino C; Abe AA; Urciuolo M; Caputo P; Calandra P; Loise V; Rossi CO; Ruoppolo G Molecules; 2022 Nov; 27(23):. PubMed ID: 36500207 [TBL] [Abstract][Full Text] [Related]
19. Co-hydrothermal carbonization of oil shale and rice husk: Combustion, pyrolysis characteristics, and synergistic effect. Liu Y; Wang E; Kan Z; Liu B; Bai L; Wang Q; Zhang X Waste Manag Res; 2023 Feb; 41(2):442-456. PubMed ID: 36127886 [TBL] [Abstract][Full Text] [Related]
20. The Prediction of Calorific Value of Carbonized Solid Fuel Produced from Refuse-Derived Fuel in the Low-Temperature Pyrolysis in CO Syguła E; Świechowski K; Stępień P; Koziel JA; Białowiec A Materials (Basel); 2020 Dec; 14(1):. PubMed ID: 33374414 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]