BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 34917972)

  • 1. Differentiation of human pluripotent stem cells into pancreatic duct-like organoids.
    Breunig M; Merkle J; Melzer MK; Heller S; Seufferlein T; Meier M; Hohwieler M; Kleger A
    STAR Protoc; 2021 Dec; 2(4):100913. PubMed ID: 34917972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protocol for Large-Scale Production of Kidney Organoids from Human Pluripotent Stem Cells.
    Sander V; Przepiorski A; Crunk AE; Hukriede NA; Holm TM; Davidson AJ
    STAR Protoc; 2020 Dec; 1(3):100150. PubMed ID: 33377044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differentiation of human pluripotent stem cells into functional airway basal stem cells.
    Suzuki S; Hawkins FJ; Barillà C; Beermann ML; Kotton DN; Davis BR
    STAR Protoc; 2021 Sep; 2(3):100683. PubMed ID: 34355203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of human pluripotent stem cell-derived fused organoids with oligodendroglia and myelin.
    Kim H; Jiang P
    STAR Protoc; 2021 Jun; 2(2):100443. PubMed ID: 33851141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentiation of beta-like cells from human induced pluripotent stem cell-derived pancreatic progenitor organoids.
    Pedraza-Arevalo S; Cujba AM; Alvarez-Fallas ME; Sancho R
    STAR Protoc; 2022 Sep; 3(3):101656. PubMed ID: 36092820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differentiation of Retinal Organoids from Human Pluripotent Stem Cells.
    Chichagova V; Dorgau B; Felemban M; Georgiou M; Armstrong L; Lako M
    Curr Protoc Stem Cell Biol; 2019 Sep; 50(1):e95. PubMed ID: 31479596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-cell-resolved differentiation of human induced pluripotent stem cells into pancreatic duct-like organoids on a microwell chip.
    Wiedenmann S; Breunig M; Merkle J; von Toerne C; Georgiev T; Moussus M; Schulte L; Seufferlein T; Sterr M; Lickert H; Weissinger SE; Möller P; Hauck SM; Hohwieler M; Kleger A; Meier M
    Nat Biomed Eng; 2021 Aug; 5(8):897-913. PubMed ID: 34239116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protocol for the generation of blastocyst-like structures from mouse extended pluripotent stem cells.
    Li R; Izpisua Belmonte JC
    STAR Protoc; 2021 Sep; 2(3):100745. PubMed ID: 34430918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protocol to use de-epithelialized porcine urinary bladder as a tissue scaffold for propagation of pancreatic cells.
    Melzer MK; Breunig M; Lopatta P; Hohwieler M; Merz S; Azoitei A; Günes C; Bolenz C; Kleger A
    STAR Protoc; 2022 Dec; 3(4):101869. PubMed ID: 36595896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimized protocol for naive human pluripotent stem cell-derived trophoblast induction.
    Io S; Iemura Y; Takashima Y
    STAR Protoc; 2021 Dec; 2(4):100921. PubMed ID: 34761233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Making a Kidney Organoid Using the Directed Differentiation of Human Pluripotent Stem Cells.
    Takasato M; Little MH
    Methods Mol Biol; 2017; 1597():195-206. PubMed ID: 28361319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accelerated Development of Rod Photoreceptors in Retinal Organoids Derived from Human Pluripotent Stem Cells by Supplementation with 9-
    Kelley RA; Chen HY; Swaroop A; Li T
    STAR Protoc; 2020 Jun; 1(1):. PubMed ID: 32728670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differentiation of retinal organoids from human pluripotent stem cells.
    Fligor CM; Huang KC; Lavekar SS; VanderWall KB; Meyer JS
    Methods Cell Biol; 2020; 159():279-302. PubMed ID: 32586447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of nephron progenitor cells and kidney organoids from human pluripotent stem cells.
    Morizane R; Bonventre JV
    Nat Protoc; 2017 Jan; 12(1):195-207. PubMed ID: 28005067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of human colonic organoids from human pluripotent stem cells.
    Daoud A; Múnera JO
    Methods Cell Biol; 2020; 159():201-227. PubMed ID: 32586443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering human hepato-biliary-pancreatic organoids from pluripotent stem cells.
    Koike H; Iwasawa K; Ouchi R; Maezawa M; Kimura M; Kodaka A; Nishii S; Thompson WL; Takebe T
    Nat Protoc; 2021 Feb; 16(2):919-936. PubMed ID: 33432231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generating Multiple Kidney Progenitors and Cell Types from Human Pluripotent Stem Cells.
    Hariharan K; Reinke P; Kurtz A
    Methods Mol Biol; 2019; 1926():103-115. PubMed ID: 30742266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generation of multi-cellular human liver organoids from pluripotent stem cells.
    Thompson WL; Takebe T
    Methods Cell Biol; 2020; 159():47-68. PubMed ID: 32586449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput generation of midbrain dopaminergic neuron organoids from reporter human pluripotent stem cells.
    Sarrafha L; Parfitt GM; Reyes R; Goldman C; Coccia E; Kareva T; Ahfeldt T
    STAR Protoc; 2021 Jun; 2(2):100463. PubMed ID: 33997803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of Pancreatic Organoid-Derived Isografts.
    D'Agosto S; Lupo F; Corbo V
    STAR Protoc; 2020 Sep; 1(2):100047. PubMed ID: 33111093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.