BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 34918015)

  • 1. Correction: Quantifying nanotherapeutic penetration using a hydrogel-based microsystem as a new 3D
    Goodarzi S; Prunet A; Rossetti F; Bort G; Tillement O; Porcel E; Lacombe S; Wu TD; Guerquin-Kern JL; Delanoë-Ayari H; Lux F; Rivière C
    Lab Chip; 2022 Feb; 22(3):652-653. PubMed ID: 34918015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying nanotherapeutic penetration using a hydrogel-based microsystem as a new 3D
    Goodarzi S; Prunet A; Rossetti F; Bort G; Tillement O; Porcel E; Lacombe S; Wu TD; Guerquin-Kern JL; Delanoë-Ayari H; Lux F; Rivière C
    Lab Chip; 2021 Jun; 21(13):2495-2510. PubMed ID: 34110341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Correction: Development of ultrasensitive and As(III)-selective upconverting (NaYF
    Duhan S; Sahoo K; Singh SK; Kumar M
    Analyst; 2021 Oct; 146(20):6334. PubMed ID: 34533546
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid spheroid clearing on a microfluidic chip.
    Silva Santisteban T; Rabajania O; Kalinina I; Robinson S; Meier M
    Lab Chip; 2017 Dec; 18(1):153-161. PubMed ID: 29192297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mini-pillar array for hydrogel-supported 3D culture and high-content histologic analysis of human tumor spheroids.
    Kang J; Lee DW; Hwang HJ; Yeon SE; Lee MY; Kuh HJ
    Lab Chip; 2016 Jun; 16(12):2265-76. PubMed ID: 27194205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of a Monolithic Lab-on-a-Chip Platform with Integrated Hydrogel Waveguides for Chemical Sensing.
    Torres-Mapa ML; Singh M; Simon O; Mapa JL; Machida M; Günther A; Roth B; Heinemann D; Terakawa M; Heisterkamp A
    Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31597248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correction: Actuated 3D microgels for single cell mechanobiology.
    Özkale B; Lou J; Özelçi E; Elosegui-Artola A; Tringides CM; Mao AS; Sakar MS; Mooney DJ
    Lab Chip; 2022 Sep; 22(18):3565-3566. PubMed ID: 35975902
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic Platform for the Long-Term On-Chip Cultivation of Mammalian Cells for Lab-On-A-Chip Applications.
    Bunge F; Driesche SVD; Vellekoop MJ
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28698531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correction: 4D synchrotron microtomography and pore-network modelling for direct in situ capillary flow visualization in 3D printed microfluidic channels.
    Piovesan A; Van De Looverbosch T; Verboven P; Achille C; Parra Cabrera C; Boller E; Cheng Y; Ameloot R; Nicolai B
    Lab Chip; 2020 Aug; 20(16):3060. PubMed ID: 32720654
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correction: 3D printed nervous system on a chip.
    Johnson BN; Lancaster KZ; Hogue IB; Meng F; Kong YL; Enquist LW; McAlpine MC
    Lab Chip; 2016 May; 16(10):1946. PubMed ID: 27090610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visible light induced electropolymerization of suspended hydrogel bioscaffolds in a microfluidic chip.
    Li P; Yu H; Liu N; Wang F; Lee GB; Wang Y; Liu L; Li WJ
    Biomater Sci; 2018 May; 6(6):1371-1378. PubMed ID: 29790875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of 3D multicellular microfluidic chip for an in vitro skin model.
    Lee S; Jin SP; Kim YK; Sung GY; Chung JH; Sung JH
    Biomed Microdevices; 2017 Jun; 19(2):22. PubMed ID: 28374277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correction: In situ growth of fluorescent silicon nanocrystals in a monolithic microcapsule as a photostable, versatile platform.
    Zhu G; Huang Y; Bhave G; Wang Y; Hu Z; Liu X
    Nanoscale; 2016 Sep; 8(37):16786. PubMed ID: 27714162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of an Anisotropically Organized Brain dECM Hydrogel-Based 3D Neuronal Culture Platform for Recapitulating the Brain Microenvironment in Vivo.
    Seo Y; Jeong S; Chung JJ; Kim SH; Choi N; Jung Y
    ACS Biomater Sci Eng; 2020 Jan; 6(1):610-620. PubMed ID: 33463191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Layer-by-Layer 3D Constructs of Fibroblasts in Hydrogel for Examining Transdermal Penetration Capability of Nanoparticles.
    Hou X; Liu S; Wang M; Wiraja C; Huang W; Chan P; Tan T; Xu C
    SLAS Technol; 2017 Aug; 22(4):447-453. PubMed ID: 27325107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correction: Galenic lab-on-a-chip concept for lipid nanocapsules production.
    Rolley N; Bonnin M; Lefebvre G; Verron S; Bargiel S; Robert L; Riou J; Simonsson C; Bizien T; Gimel JC; Benoit JP; Brotons G; Calvignac B
    Nanoscale; 2021 Sep; 13(34):14572. PubMed ID: 34473189
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug penetration and metabolism in 3D cell cultures treated in a 3D printed fluidic device: assessment of irinotecan via MALDI imaging mass spectrometry.
    LaBonia GJ; Lockwood SY; Heller AA; Spence DM; Hummon AB
    Proteomics; 2016 Jun; 16(11-12):1814-21. PubMed ID: 27198560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new technique for studying directional cell migration in a hydrogel-based three-dimensional matrix for tissue engineering model systems.
    Topman G; Shoham N; Sharabani-Yosef O; Lin FH; Gefen A
    Micron; 2013 Aug; 51():9-12. PubMed ID: 23896652
    [TBL] [