BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 34918402)

  • 1. EcoDiet: A hierarchical Bayesian model to combine stomach, biotracer, and literature data into diet matrix estimation.
    Hernvann PY; Gascuel D; Kopp D; Robert M; Rivot E
    Ecol Appl; 2022 Mar; 32(2):e2521. PubMed ID: 34918402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TrophicCS: Spatialized trophic data of the Celtic Sea continental shelf food web.
    Robert M; Pawlowski L; Kopp D
    Ecology; 2022 Aug; 103(8):e3708. PubMed ID: 35365895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unifying error structures in commonly used biotracer mixing models.
    Stock BC; Semmens BX
    Ecology; 2016 Oct; 97(10):2562-2569. PubMed ID: 27859126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying learning in biotracer studies.
    Brown CJ; Brett MT; Adame MF; Stewart-Koster B; Bunn SE
    Oecologia; 2018 Jul; 187(3):597-608. PubMed ID: 29651662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. IsoWeb: a bayesian isotope mixing model for diet analysis of the whole food web.
    Kadoya T; Osada Y; Takimoto G
    PLoS One; 2012; 7(7):e41057. PubMed ID: 22848427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The application of Bayesian hierarchical models to quantify individual diet specialization.
    Coblentz KE; Rosenblatt AE; Novak M
    Ecology; 2017 Jun; 98(6):1535-1547. PubMed ID: 28470993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Does lipid-correction introduce biases into isotopic mixing models? Implications for diet reconstruction studies.
    Arostegui MC; Schindler DE; Holtgrieve GW
    Oecologia; 2019 Dec; 191(4):745-755. PubMed ID: 31667600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EStimating Contaminants tRansfers Over Complex food webs (ESCROC): An innovative Bayesian method for estimating POP's biomagnification in aquatic food webs.
    Ballutaud M; Drouineau H; Carassou L; Munoz G; Chevillot X; Labadie P; Budzinski H; Lobry J
    Sci Total Environ; 2019 Mar; 658():638-649. PubMed ID: 30580218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial guilds in the Serengeti food web revealed by a Bayesian group model.
    Baskerville EB; Dobson AP; Bedford T; Allesina S; Anderson TM; Pascual M
    PLoS Comput Biol; 2011 Dec; 7(12):e1002321. PubMed ID: 22219719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of trophic niche compression: Evidence from landscape disturbance.
    Burdon FJ; McIntosh AR; Harding JS
    J Anim Ecol; 2020 Mar; 89(3):730-744. PubMed ID: 31691281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beyond simple linear mixing models: process-based isotope partitioning of ecological processes.
    Ogle K; Tucker C; Cable JM
    Ecol Appl; 2014 Jan; 24(1):181-95. PubMed ID: 24640543
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revolution in food web analysis and trophic ecology: diet analysis by DNA and stable isotope analysis.
    Carreon-Martinez L; Heath DD
    Mol Ecol; 2010 Jan; 19(1):25-7. PubMed ID: 20078768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Asymmetric foraging lowers the trophic level and omnivory in natural food webs.
    Zheng J; Brose U; Gravel D; Gauzens B; Luo M; Wang S
    J Anim Ecol; 2021 Jun; 90(6):1444-1454. PubMed ID: 33666227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variable δ(15)N diet-tissue discrimination factors among sharks: implications for trophic position, diet and food web models.
    Olin JA; Hussey NE; Grgicak-Mannion A; Fritts MW; Wintner SP; Fisk AT
    PLoS One; 2013; 8(10):e77567. PubMed ID: 24147026
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trophic Dynamics and Feeding Ecology of Skipjack Tuna (
    Chang YC; Chiang WC; Madigan DJ; Tsai FY; Chiang CL; Hsu HH; Lin SM; Zhuang MY; Sun CT; Chen LC; Wang SP
    Molecules; 2022 Feb; 27(3):. PubMed ID: 35164337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of Bayesian and numerical optimization-based diet estimation on herbivorous zooplankton.
    Litmanen JJ; Perälä TA; Taipale SJ
    Philos Trans R Soc Lond B Biol Sci; 2020 Aug; 375(1804):20190651. PubMed ID: 32536310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A statistical approach for estimating fish diet compositions from multiple, data sources: Gulf of California case study.
    Ainsworth CH; Kaplan IC; Levin PS; Mangel M
    Ecol Appl; 2010 Dec; 20(8):2188-202. PubMed ID: 21265451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Including source uncertainty and prior information in the analysis of stable isotope mixing models.
    Ward EJ; Semmens BX; Schindler DE
    Environ Sci Technol; 2010 Jun; 44(12):4645-50. PubMed ID: 20496928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diet and trophic ecology of the tiger shark (Galeocerdo cuvier) from South African waters.
    Dicken ML; Hussey NE; Christiansen HM; Smale MJ; Nkabi N; Cliff G; Wintner SP
    PLoS One; 2017; 12(6):e0177897. PubMed ID: 28594833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Serengeti food web: empirical quantification and analysis of topological changes under increasing human impact.
    de Visser SN; Freymann BP; Olff H
    J Anim Ecol; 2011 Mar; 80(2):484-94. PubMed ID: 21155772
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.