These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 34918621)

  • 21. Magnetic Resonance of Rectal Cancer Response to Therapy: An Image Quality Comparison between 3.0 and 1.5 Tesla.
    Caruso D; Zerunian M; De Santis D; Biondi T; Paolantonio P; Rengo M; Bellini D; Ferrari R; Ciolina M; Lucertini E; Polici M; Iannicelli E; Tombolini V; Laghi A
    Biomed Res Int; 2020; 2020():9842732. PubMed ID: 33102603
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deep learning-based automatic delineation of anal cancer gross tumour volume: a multimodality comparison of CT, PET and MRI.
    Groendahl AR; Moe YM; Kaushal CK; Huynh BN; Rusten E; Tomic O; Hernes E; Hanekamp B; Undseth C; Guren MG; Malinen E; Futsaether CM
    Acta Oncol; 2022 Jan; 61(1):89-96. PubMed ID: 34783610
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A prospective study of DWI, DCE-MRI and FDG PET imaging for target delineation in brachytherapy for cervical cancer.
    Han K; Croke J; Foltz W; Metser U; Xie J; Shek T; Driscoll B; Ménard C; Vines D; Coolens C; Simeonov A; Beiki-Ardakani A; Leung E; Levin W; Fyles A; Milosevic MF
    Radiother Oncol; 2016 Sep; 120(3):519-525. PubMed ID: 27528120
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fully Automatic Segmentation of Acute Ischemic Lesions on Diffusion-Weighted Imaging Using Convolutional Neural Networks: Comparison with Conventional Algorithms.
    Woo I; Lee A; Jung SC; Lee H; Kim N; Cho SJ; Kim D; Lee J; Sunwoo L; Kang DW
    Korean J Radiol; 2019 Aug; 20(8):1275-1284. PubMed ID: 31339015
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automatic intraprostatic lesion segmentation in multiparametric magnetic resonance images with proposed multiple branch UNet.
    Chen Y; Xing L; Yu L; Bagshaw HP; Buyyounouski MK; Han B
    Med Phys; 2020 Dec; 47(12):6421-6429. PubMed ID: 33012016
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Full convolutional network based multiple side-output fusion architecture for the segmentation of rectal tumors in magnetic resonance images: A multi-vendor study.
    Wang M; Xie P; Ran Z; Jian J; Zhang R; Xia W; Yu T; Ni C; Gu J; Gao X; Meng X
    Med Phys; 2019 Jun; 46(6):2659-2668. PubMed ID: 30972763
    [TBL] [Abstract][Full Text] [Related]  

  • 27. 3 Tesla multiparametric MRI for GTV-definition of Dominant Intraprostatic Lesions in patients with Prostate Cancer--an interobserver variability study.
    Rischke HC; Nestle U; Fechter T; Doll C; Volegova-Neher N; Henne K; Scholber J; Knippen S; Kirste S; Grosu AL; Jilg CA
    Radiat Oncol; 2013 Jul; 8():183. PubMed ID: 23875672
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of Multisource Adaptive MRI Fusion for Gross Tumor Volume Delineation of Hepatocellular Carcinoma.
    Cheung AL; Zhang L; Liu C; Li T; Cheung AH; Leung C; Leung AK; Lam SK; Lee VH; Cai J
    Front Oncol; 2022; 12():816678. PubMed ID: 35280780
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reproducibility of rectal tumor volume delineation using diffusion-weighted MRI: Agreement on volumes between observers.
    Rosa C; Caravatta L; Delli Pizzi A; Di Tommaso M; Cianci R; Gasparini L; Perrotti F; Solmita J; Sartori S; Zecca IAL; Di Nicola M; Basilico R; Genovesi D
    Cancer Radiother; 2019 Jun; 23(3):216-221. PubMed ID: 31109840
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deep learning for automatic segmentation of vestibular schwannoma: a retrospective study from multi-center routine MRI.
    Kujawa A; Dorent R; Connor S; Thomson S; Ivory M; Vahedi A; Guilhem E; Wijethilake N; Bradford R; Kitchen N; Bisdas S; Ourselin S; Vercauteren T; Shapey J
    Front Comput Neurosci; 2024; 18():1365727. PubMed ID: 38784680
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improved U-Net based on contour prediction for efficient segmentation of rectal cancer.
    Li D; Chu X; Cui Y; Zhao J; Zhang K; Yang X
    Comput Methods Programs Biomed; 2022 Jan; 213():106493. PubMed ID: 34749245
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Diffusion-weighted MRI in image-guided adaptive brachytherapy: Tumor delineation feasibility study and comparison with GEC-ESTRO guidelines.
    Schernberg A; Balleyguier C; Dumas I; Gouy S; Escande A; Bentivegna E; Morice P; Deutsch E; Haie-Meder C; Chargari C
    Brachytherapy; 2017; 16(5):956-963. PubMed ID: 28673762
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fully automated detection of prostate transition zone tumors on T2-weighted and apparent diffusion coefficient (ADC) map MR images using U-Net ensemble.
    Wong T; Schieda N; Sathiadoss P; Haroon M; Abreu-Gomez J; Ukwatta E
    Med Phys; 2021 Nov; 48(11):6889-6900. PubMed ID: 34418108
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of apparent diffusion coefficient maps to T2-weighted images for target delineation in cervix cancer brachytherapy.
    Esthappan J; Ma DJ; Narra VR; Raptis CA; Grigsby PW
    J Contemp Brachytherapy; 2011 Dec; 3(4):193-8. PubMed ID: 23346128
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluation of Deep Neural Networks for Semantic Segmentation of Prostate in T2W MRI.
    Khan Z; Yahya N; Alsaih K; Ali SSA; Meriaudeau F
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32503330
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Combining analysis of multi-parametric MR images into a convolutional neural network: Precise target delineation for vestibular schwannoma treatment planning.
    Lee WK; Wu CC; Lee CC; Lu CF; Yang HC; Huang TH; Lin CY; Chung WY; Wang PS; Wu HM; Guo WY; Wu YT
    Artif Intell Med; 2020 Jul; 107():101911. PubMed ID: 32828450
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sources of variation in multicenter rectal MRI data and their effect on radiomics feature reproducibility.
    Schurink NW; van Kranen SR; Roberti S; van Griethuysen JJM; Bogveradze N; Castagnoli F; El Khababi N; Bakers FCH; de Bie SH; Bosma GPT; Cappendijk VC; Geenen RWF; Neijenhuis PA; Peterson GM; Veeken CJ; Vliegen RFA; Beets-Tan RGH; Lambregts DMJ
    Eur Radiol; 2022 Mar; 32(3):1506-1516. PubMed ID: 34655313
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deep learning for fully automated tumor segmentation and extraction of magnetic resonance radiomics features in cervical cancer.
    Lin YC; Lin CH; Lu HY; Chiang HJ; Wang HK; Huang YT; Ng SH; Hong JH; Yen TC; Lai CH; Lin G
    Eur Radiol; 2020 Mar; 30(3):1297-1305. PubMed ID: 31712961
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of MRI response evaluation methods in rectal cancer: a multicentre and multireader validation study.
    El Khababi N; Beets-Tan RGH; Tissier R; Lahaye MJ; Maas M; Curvo-Semedo L; Dresen RC; Nougaret S; Beets GL; Lambregts DMJ;
    Eur Radiol; 2023 Jun; 33(6):4367-4377. PubMed ID: 36576549
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An investigation of the effect of fat suppression and dimensionality on the accuracy of breast MRI segmentation using U-nets.
    Fashandi H; Kuling G; Lu Y; Wu H; Martel AL
    Med Phys; 2019 Mar; 46(3):1230-1244. PubMed ID: 30609062
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.