These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 34918897)
1. Thermal Management for Hydrogen Charging and Discharging in a Screened Metal-Organic Framework Particle Tank. Wang H; Qu Z; Yin Y; Zhang J; Ming P ACS Appl Mater Interfaces; 2021 Dec; 13(51):61838-61848. PubMed ID: 34918897 [TBL] [Abstract][Full Text] [Related]
2. Understanding Volumetric and Gravimetric Hydrogen Adsorption Trade-off in Metal-Organic Frameworks. Gómez-Gualdrón DA; Wang TC; García-Holley P; Sawelewa RM; Argueta E; Snurr RQ; Hupp JT; Yildirim T; Farha OK ACS Appl Mater Interfaces; 2017 Oct; 9(39):33419-33428. PubMed ID: 28387498 [TBL] [Abstract][Full Text] [Related]
3. Data Driven Discovery of MOFs for Hydrogen Gas Adsorption. Singh SK; Sose AT; Wang F; Bejagam KK; Deshmukh SA J Chem Theory Comput; 2023 Oct; 19(19):6686-6703. PubMed ID: 37756641 [TBL] [Abstract][Full Text] [Related]
4. Gravimetric tank method to evaluate material-enhanced hydrogen storage by physisorbing materials. Iakunkov A; Klechikov A; Sun J; Steenhaut T; Hermans S; Filinchuk Y; Talyzin A Phys Chem Chem Phys; 2018 Nov; 20(44):27983-27991. PubMed ID: 30382273 [TBL] [Abstract][Full Text] [Related]
5. Machine learning potential for modelling H Liu S; Dupuis R; Fan D; Benzaria S; Bonneau M; Bhatt P; Eddaoudi M; Maurin G Chem Sci; 2024 Apr; 15(14):5294-5302. PubMed ID: 38577379 [TBL] [Abstract][Full Text] [Related]
6. Densified HKUST-1 Monoliths as a Route to High Volumetric and Gravimetric Hydrogen Storage Capacity. Madden DG; O'Nolan D; Rampal N; Babu R; Çamur C; Al Shakhs AN; Zhang SY; Rance GA; Perez J; Maria Casati NP; Cuadrado-Collados C; O'Sullivan D; Rice NP; Gennett T; Parilla P; Shulda S; Hurst KE; Stavila V; Allendorf MD; Silvestre-Albero J; Forse AC; Champness NR; Chapman KW; Fairen-Jimenez D J Am Chem Soc; 2022 Aug; 144(30):13729-13739. PubMed ID: 35876689 [TBL] [Abstract][Full Text] [Related]
7. High performance hydrogen storage from Be-BTB metal-organic framework at room temperature. Lim WX; Thornton AW; Hill AJ; Cox BJ; Hill JM; Hill MR Langmuir; 2013 Jul; 29(27):8524-33. PubMed ID: 23805913 [TBL] [Abstract][Full Text] [Related]
8. Simulation of H Velioglu S; Keskin S J Mater Chem A Mater; 2019 Feb; 7(5):2301-2314. PubMed ID: 30931122 [TBL] [Abstract][Full Text] [Related]
9. Computational Screening of Metal-Organic Frameworks for Ammonia Capture from H Zhu Z; Wang H; Wu XY; Luo K; Fan J ACS Omega; 2022 Oct; 7(42):37640-37653. PubMed ID: 36312414 [TBL] [Abstract][Full Text] [Related]
10. Metal-Organic Frameworks (MOFs) As Hydrogen Storage Materials At Near-Ambient Temperature. Sutton AL; Mardel JI; Hill MR Chemistry; 2024 Aug; 30(44):e202400717. PubMed ID: 38825571 [TBL] [Abstract][Full Text] [Related]
11. Lithium-functionalized metal-organic frameworks that show >10 wt% H2 uptake at ambient temperature. Han SS; Jung DH; Choi SH; Heo J Chemphyschem; 2013 Aug; 14(12):2698-703. PubMed ID: 23784818 [TBL] [Abstract][Full Text] [Related]
12. Hydrogen storage in M(BDC)(TED) Xuan Huynh NT; Ngan VT; Yen Ngoc NT; Chihaia V; Son DN RSC Adv; 2024 Jun; 14(28):19891-19902. PubMed ID: 38903680 [TBL] [Abstract][Full Text] [Related]
13. Accelerating Discovery of Metal-Organic Frameworks for Methane Adsorption with Hierarchical Screening and Deep Learning. Wang R; Zhong Y; Bi L; Yang M; Xu D ACS Appl Mater Interfaces; 2020 Nov; 12(47):52797-52807. PubMed ID: 33175490 [TBL] [Abstract][Full Text] [Related]
14. Adsorption and desorption of hydrogen on metal-organic framework materials for storage applications: comparison with other nanoporous materials. Thomas KM Dalton Trans; 2009 Mar; (9):1487-505. PubMed ID: 19421589 [TBL] [Abstract][Full Text] [Related]
15. Understanding hydrogen sorption in a polar metal-organic framework with constricted channels. Stern AC; Belof JL; Eddaoudi M; Space B J Chem Phys; 2012 Jan; 136(3):034705. PubMed ID: 22280775 [TBL] [Abstract][Full Text] [Related]
16. Computational design of tetrazolate-based metal-organic frameworks for CH Wu X; Peng L; Xiang S; Cai W Phys Chem Chem Phys; 2018 Dec; 20(48):30150-30158. PubMed ID: 30357179 [TBL] [Abstract][Full Text] [Related]
17. Studies on metal-organic frameworks of Cu(II) with isophthalate linkers for hydrogen storage. Yan Y; Yang S; Blake AJ; Schröder M Acc Chem Res; 2014 Feb; 47(2):296-307. PubMed ID: 24168725 [TBL] [Abstract][Full Text] [Related]
18. Computer simulations of 4240 MOF membranes for H Altintas C; Avci G; Daglar H; Gulcay E; Erucar I; Keskin S J Mater Chem A Mater; 2018 Apr; 6(14):5836-5847. PubMed ID: 30009024 [TBL] [Abstract][Full Text] [Related]
19. Exploring Hydrogen Storage Capacity in Metal-Organic Frameworks: A Bayesian Optimization Approach. Ghude S; Chowdhury C Chemistry; 2023 Dec; 29(69):e202301840. PubMed ID: 37638413 [TBL] [Abstract][Full Text] [Related]
20. Improving the hydrogen storage properties of metal-organic framework by functionalization. Xia L; Liu Q; Wang F; Lu J J Mol Model; 2016 Oct; 22(10):254. PubMed ID: 27699551 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]