These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 34919322)

  • 1. Perspectives for the Upgrading of Bio-Based Vicinal Diols within the Developing European Bioeconomy.
    Muzyka C; Monbaliu JM
    ChemSusChem; 2022 Mar; 15(5):e202102391. PubMed ID: 34919322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous Flow Upgrading of Selected C
    Gérardy R; Debecker DP; Estager J; Luis P; Monbaliu JM
    Chem Rev; 2020 Aug; 120(15):7219-7347. PubMed ID: 32667196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. H2-driven deoxygenation of epoxides and diols to alkenes catalyzed by methyltrioxorhenium.
    Ziegler JE; Zdilla MJ; Evans AJ; Abu-Omar MM
    Inorg Chem; 2009 Nov; 48(21):9998-10000. PubMed ID: 19807132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhenium-catalyzed deoxydehydration of diols and polyols.
    Dethlefsen JR; Fristrup P
    ChemSusChem; 2015 Mar; 8(5):767-75. PubMed ID: 25477245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic deoxydehydration of diols to olefins by using a bulky cyclopentadiene-based trioxorhenium catalyst.
    Raju S; Jastrzebski JT; Lutz M; Klein Gebbink RJ
    ChemSusChem; 2013 Sep; 6(9):1673-80. PubMed ID: 23843348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Advances in the Deoxydehydration of Vicinal Diols and Polyols.
    Donnelly LJ; Thomas SP; Love JB
    Chem Asian J; 2019 Nov; 14(21):3782-3790. PubMed ID: 31573149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rhenium-catalyzed didehydroxylation of vicinal diols to alkenes using a simple alcohol as a reducing agent.
    Arceo E; Ellman JA; Bergman RG
    J Am Chem Soc; 2010 Aug; 132(33):11408-9. PubMed ID: 20669903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molybdenum-catalyzed deoxydehydration of vicinal diols.
    Dethlefsen JR; Lupp D; Oh BC; Fristrup P
    ChemSusChem; 2014 Feb; 7(2):425-8. PubMed ID: 24399816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deoxydehydration of polyols.
    Boucher-Jacobs C; Nicholas KM
    Top Curr Chem; 2014; 353():163-84. PubMed ID: 24756633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deoxydehydration of vicinal diols by homogeneous catalysts: a mechanistic overview.
    DeNike KA; Kilyanek SM
    R Soc Open Sci; 2019 Nov; 6(11):191165. PubMed ID: 31827851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developing a Sustainable and Circular Bio-Based Economy in EU: By Partnering Across Sectors, Upscaling and Using New Knowledge Faster, and For the Benefit of Climate, Environment & Biodiversity, and People & Business.
    Lange L; Connor KO; Arason S; Bundgård-Jørgensen U; Canalis A; Carrez D; Gallagher J; Gøtke N; Huyghe C; Jarry B; Llorente P; Marinova M; Martins LO; Mengal P; Paiano P; Panoutsou C; Rodrigues L; Stengel DB; van der Meer Y; Vieira H
    Front Bioeng Biotechnol; 2020; 8():619066. PubMed ID: 33553123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Cp
    Li J; Lutz M; Otte M; Klein Gebbink RJM
    ChemCatChem; 2018 Oct; 10(20):4755-4760. PubMed ID: 31007775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silver(I)-Promoted Cascade Reaction of Propargylic Alcohols, Carbon Dioxide, and Vicinal Diols: Thermodynamically Favorable Route to Cyclic Carbonates.
    Zhou ZH; Song QW; He LN
    ACS Omega; 2017 Jan; 2(1):337-345. PubMed ID: 31457234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EU ambition to build the world's leading bioeconomy-Uncertain times demand innovative and sustainable solutions.
    Bell J; Paula L; Dodd T; Németh S; Nanou C; Mega V; Campos P
    N Biotechnol; 2018 Jan; 40(Pt A):25-30. PubMed ID: 28676417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Destination bioeconomy - The path towards a smarter, more sustainable future.
    Dupont-Inglis J; Borg A
    N Biotechnol; 2018 Jan; 40(Pt A):140-143. PubMed ID: 28587885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomass-based polyols through oxypropylation reaction.
    Aniceto JP; Portugal I; Silva CM
    ChemSusChem; 2012 Aug; 5(8):1358-68. PubMed ID: 22807440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Algal biorefinery: A sustainable approach to valorize algal-based biomass towards multiple product recovery.
    Chandra R; Iqbal HMN; Vishal G; Lee HS; Nagra S
    Bioresour Technol; 2019 Apr; 278():346-359. PubMed ID: 30718075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils.
    Vispute TP; Zhang H; Sanna A; Xiao R; Huber GW
    Science; 2010 Nov; 330(6008):1222-7. PubMed ID: 21109668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biotechnological production of enantiopure epoxides by enzymatic kinetic resolution.
    Choi WJ
    Appl Microbiol Biotechnol; 2009 Aug; 84(2):239-47. PubMed ID: 19590868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deoxygenation reactions in organic synthesis catalyzed by dioxomolybdenum(VI) complexes.
    Suárez-Pantiga S; Sanz R
    Org Biomol Chem; 2021 Dec; 19(48):10472-10492. PubMed ID: 34816863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.