These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 34919404)

  • 1. Enhanced Surface Icephobicity on an Elastic Substrate.
    He Z; Jamil MI; Li T; Zhang Q
    Langmuir; 2022 Jan; 38(1):18-35. PubMed ID: 34919404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crack-Initiated Durable Low-Adhesion Trilayer Icephobic Surfaces with Microcone-Array Anchored Porous Sponges and Polydimethylsiloxane Cover.
    Chen C; Fan P; Zhu D; Tian Z; Zhao H; Wang L; Peng R; Zhong M
    ACS Appl Mater Interfaces; 2023 Feb; 15(4):6025-6034. PubMed ID: 36688663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triple-Scale Superhydrophobic Surface with Excellent Anti-Icing and Icephobic Performance via Ultrafast Laser Hybrid Fabrication.
    Pan R; Zhang H; Zhong M
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1743-1753. PubMed ID: 33370114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imparting Icephobicity with Substrate Flexibility.
    Vasileiou T; Schutzius TM; Poulikakos D
    Langmuir; 2017 Jul; 33(27):6708-6718. PubMed ID: 28609620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spraying Fabrication of Durable and Transparent Coatings for Anti-Icing Application: Dynamic Water Repellency, Icing Delay, and Ice Adhesion.
    Shen Y; Wu Y; Tao J; Zhu C; Chen H; Wu Z; Xie Y
    ACS Appl Mater Interfaces; 2019 Jan; 11(3):3590-3598. PubMed ID: 30589262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physics of icing and rational design of surfaces with extraordinary icephobicity.
    Schutzius TM; Jung S; Maitra T; Eberle P; Antonini C; Stamatopoulos C; Poulikakos D
    Langmuir; 2015 May; 31(17):4807-21. PubMed ID: 25346213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing the Mechanical Durability of Icephobic Surfaces by Introducing Autonomous Self-Healing Function.
    Zhuo Y; Håkonsen V; He Z; Xiao S; He J; Zhang Z
    ACS Appl Mater Interfaces; 2018 Apr; 10(14):11972-11978. PubMed ID: 29547258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metallic skeleton promoted two-phase durable icephobic layers.
    Wang J; Wu M; Liu J; Xu F; Hussain T; Scotchford C; Hou X
    J Colloid Interface Sci; 2021 Apr; 587():47-55. PubMed ID: 33360910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Icephobic Performance of Multi-Scale Laser-Textured Aluminum Surfaces for Aeronautic Applications.
    Milles S; Vercillo V; Alamri S; Aguilar-Morales AI; Kunze T; Bonaccurso E; Lasagni AF
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33430008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic Anti-Icing Surfaces (DAIS).
    Wang F; Zhuo Y; He Z; Xiao S; He J; Zhang Z
    Adv Sci (Weinh); 2021 Nov; 8(21):e2101163. PubMed ID: 34499428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interdependence of Surface Roughness on Icephobic Performance: A Review.
    Memon H; Wang J; Hou X
    Materials (Basel); 2023 Jun; 16(13):. PubMed ID: 37444925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. From superhydrophobicity to icephobicity: forces and interaction analysis.
    Hejazi V; Sobolev K; Nosonovsky M
    Sci Rep; 2013; 3():2194. PubMed ID: 23846773
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Passive Anti-Icing Performances of the Same Superhydrophobic Surfaces under Static Freezing, Dynamic Supercooled-Droplet Impinging, and Icing Wind Tunnel Tests.
    Tian Z; Wang L; Zhu D; Chen C; Zhao H; Peng R; Zhang H; Fan P; Zhong M
    ACS Appl Mater Interfaces; 2023 Feb; 15(4):6013-6024. PubMed ID: 36656131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Situ Activation of Superhydrophobic Surfaces with Triple Icephobicity at Low Temperatures.
    Sun Y; Wang Y; Liang W; He L; Wang F; Zhu D; Zhao H
    ACS Appl Mater Interfaces; 2022 Nov; 14(43):49352-49361. PubMed ID: 36260496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enabling sequential rupture for lowering atomistic ice adhesion.
    Xiao S; Skallerud BH; Wang F; Zhang Z; He J
    Nanoscale; 2019 Sep; 11(35):16262-16269. PubMed ID: 31454002
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Saltwater icephobicity: Influence of surface chemistry on saltwater icing.
    Carpenter K; Bahadur V
    Sci Rep; 2015 Dec; 5():17563. PubMed ID: 26626958
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anisotropic Icephobic Mechanisms of Textured Surface: Barrier or Accelerator?
    Yang D; Zheng Y; Li J; Clare AT; Choi KS; Hou X
    ACS Appl Mater Interfaces; 2024 Jul; 16(27):35852-35863. PubMed ID: 38934333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Verification of icephobic/anti-icing properties of a superhydrophobic surface.
    Wang Y; Xue J; Wang Q; Chen Q; Ding J
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3370-81. PubMed ID: 23537106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Icephobic/anti-icing properties of superhydrophobic surfaces.
    Huang W; Huang J; Guo Z; Liu W
    Adv Colloid Interface Sci; 2022 Jun; 304():102658. PubMed ID: 35381422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Icephobic Gradient Polymer Coatings Deposited via iCVD: A Novel Approach for Icing Control and Mitigation.
    Hernández Rodríguez G; Fratschko M; Stendardo L; Antonini C; Resel R; Coclite AM
    ACS Appl Mater Interfaces; 2024 Mar; 16(9):11901-11913. PubMed ID: 38400877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.