These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 34919733)
21. Impact of mitochondrial alternative oxidase expression on the response of Nicotiana tabacum to cold temperature. Wang J; Rajakulendran N; Amirsadeghi S; Vanlerberghe GC Physiol Plant; 2011 Aug; 142(4):339-51. PubMed ID: 21401618 [TBL] [Abstract][Full Text] [Related]
22. Distinct responses of the mitochondrial respiratory chain to long- and short-term high-light environments in Arabidopsis thaliana. Yoshida K; Watanabe CK; Hachiya T; Tholen D; Shibata M; Terashima I; Noguchi K Plant Cell Environ; 2011 Apr; 34(4):618-28. PubMed ID: 21251020 [TBL] [Abstract][Full Text] [Related]
23. Alternative oxidase plays a role in minimizing ROS and RNS produced under salinity stress in Arabidopsis thaliana. Manbir ; Singh P; Kumari A; Gupta KJ Physiol Plant; 2022 Mar; 174(2):e13649. PubMed ID: 35149995 [TBL] [Abstract][Full Text] [Related]
24. The gene expression profiles of mitochondrial respiratory components in Arabidopsis plants with differing amounts of Garmash EV; Belykh ES; Velegzhaninov IO Plant Signal Behav; 2021 Mar; 16(3):1864962. PubMed ID: 33369529 [TBL] [Abstract][Full Text] [Related]
25. The alternative oxidase of plant mitochondria is involved in the acclimation of shoot growth at low temperature. A study of Arabidopsis AOX1a transgenic plants. Fiorani F; Umbach AL; Siedow JN Plant Physiol; 2005 Dec; 139(4):1795-805. PubMed ID: 16299170 [TBL] [Abstract][Full Text] [Related]
26. Functional Relationship of Arabidopsis AOXs and PTOX Revealed via Transgenic Analysis. Wang D; Wang C; Li C; Song H; Qin J; Chang H; Fu W; Wang Y; Wang F; Li B; Hao Y; Xu M; Fu A Front Plant Sci; 2021; 12():692847. PubMed ID: 34367216 [TBL] [Abstract][Full Text] [Related]
27. Biogenesis of mitochondria in cauliflower (Brassica oleracea var. botrytis) curds subjected to temperature stress and recovery involves regulation of the complexome, respiratory chain activity, organellar translation and ultrastructure. Rurek M; Woyda-Ploszczyca AM; Jarmuszkiewicz W Biochim Biophys Acta; 2015; 1847(4-5):399-417. PubMed ID: 25617518 [TBL] [Abstract][Full Text] [Related]
28. Characterization of the gene family for alternative oxidase from Arabidopsis thaliana. Saisho D; Nambara E; Naito S; Tsutsumi N; Hirai A; Nakazono M Plant Mol Biol; 1997 Nov; 35(5):585-96. PubMed ID: 9349280 [TBL] [Abstract][Full Text] [Related]
29. UCP1 and AOX1a contribute to regulation of carbon and nitrogen metabolism and yield in Arabidopsis under low nitrogen stress. Qiao X; Ruan M; Yu T; Cui C; Chen C; Zhu Y; Li F; Wang S; Na X; Wang X; Bi Y Cell Mol Life Sci; 2022 Jan; 79(1):69. PubMed ID: 34974624 [TBL] [Abstract][Full Text] [Related]
30. The Mitochondrial Respiratory Chain Maintains the Photosynthetic Electron Flow in Arabidopsis thaliana Leaves under High-Light Stress. Yamada S; Ozaki H; Noguchi K Plant Cell Physiol; 2020 Feb; 61(2):283-295. PubMed ID: 31603217 [TBL] [Abstract][Full Text] [Related]
31. ALTERNATIVE OXIDASE1a modulates the oxidative challenge during moderate Cd exposure in Arabidopsis thaliana leaves. Keunen E; Schellingen K; Van Der Straeten D; Remans T; Colpaert J; Vangronsveld J; Cuypers A J Exp Bot; 2015 May; 66(10):2967-77. PubMed ID: 25743159 [TBL] [Abstract][Full Text] [Related]
32. The lack of alternative oxidase at low temperature leads to a disruption of the balance in carbon and nitrogen metabolism, and to an up-regulation of antioxidant defence systems in Arabidopsis thaliana leaves. Watanabe CK; Hachiya T; Terashima I; Noguchi K Plant Cell Environ; 2008 Aug; 31(8):1190-202. PubMed ID: 18507803 [TBL] [Abstract][Full Text] [Related]
33. Analysis of Posttranslational Activation of Alternative Oxidase Isoforms. Selinski J; Hartmann A; Kordes A; Deckers-Hebestreit G; Whelan J; Scheibe R Plant Physiol; 2017 Aug; 174(4):2113-2127. PubMed ID: 28596420 [TBL] [Abstract][Full Text] [Related]
34. Suppression of mitochondrial alternative oxidase can result in upregulation of the ROS scavenging network: some possible mechanisms underlying the compensation effect. Garmash EV Plant Biol (Stuttg); 2023 Jan; 25(1):43-53. PubMed ID: 36245276 [TBL] [Abstract][Full Text] [Related]
35. The absence of alternative oxidase AOX1A results in altered response of photosynthetic carbon assimilation to increasing CO(2) in Arabidopsis thaliana. Gandin A; Duffes C; Day DA; Cousins AB Plant Cell Physiol; 2012 Sep; 53(9):1627-37. PubMed ID: 22848123 [TBL] [Abstract][Full Text] [Related]
36. A lack of mitochondrial alternative oxidase compromises capacity to recover from severe drought stress. Wang J; Vanlerberghe GC Physiol Plant; 2013 Dec; 149(4):461-73. PubMed ID: 23582049 [TBL] [Abstract][Full Text] [Related]
37. Identification of Alternative Mitochondrial Electron Transport Pathway Components in Chickpea Indicates a Differential Response to Salinity Stress between Cultivars. Sweetman C; Miller TK; Booth NJ; Shavrukov Y; Jenkins CLD; Soole KL; Day DA Int J Mol Sci; 2020 May; 21(11):. PubMed ID: 32481694 [TBL] [Abstract][Full Text] [Related]
38. The absence of ALTERNATIVE OXIDASE1a in Arabidopsis results in acute sensitivity to combined light and drought stress. Giraud E; Ho LH; Clifton R; Carroll A; Estavillo G; Tan YF; Howell KA; Ivanova A; Pogson BJ; Millar AH; Whelan J Plant Physiol; 2008 Jun; 147(2):595-610. PubMed ID: 18424626 [TBL] [Abstract][Full Text] [Related]
39. Suppression of NDA-type alternative mitochondrial NAD(P)H dehydrogenases in arabidopsis thaliana modifies growth and metabolism, but not high light stimulation of mitochondrial electron transport. Wallström SV; Florez-Sarasa I; Araújo WL; Escobar MA; Geisler DA; Aidemark M; Lager I; Fernie AR; Ribas-Carbó M; Rasmusson AG Plant Cell Physiol; 2014 May; 55(5):881-96. PubMed ID: 24486764 [TBL] [Abstract][Full Text] [Related]
40. Decreasing electron flux through the cytochrome and/or alternative respiratory pathways triggers common and distinct cellular responses dependent on growth conditions. Kühn K; Yin G; Duncan O; Law SR; Kubiszewski-Jakubiak S; Kaur P; Meyer E; Wang Y; Small CC; Giraud E; Narsai R; Whelan J Plant Physiol; 2015 Jan; 167(1):228-50. PubMed ID: 25378695 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]