BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 34919812)

  • 1. Haploid mouse germ cell precursors from embryonic stem cells reveal Xist activation from a single X chromosome.
    Aizawa E; Kaufmann C; Sting S; Boigner S; Freimann R; Di Minin G; Wutz A
    Stem Cell Reports; 2022 Jan; 17(1):43-52. PubMed ID: 34919812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Failure of extra-embryonic progenitor maintenance in the absence of dosage compensation.
    Mugford JW; Yee D; Magnuson T
    Development; 2012 Jun; 139(12):2130-8. PubMed ID: 22573614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Spen as a Crucial Factor for Xist Function through Forward Genetic Screening in Haploid Embryonic Stem Cells.
    Monfort A; Di Minin G; Postlmayr A; Freimann R; Arieti F; Thore S; Wutz A
    Cell Rep; 2015 Jul; 12(4):554-61. PubMed ID: 26190100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sex-specific silencing of X-linked genes by Xist RNA.
    Gayen S; Maclary E; Hinten M; Kalantry S
    Proc Natl Acad Sci U S A; 2016 Jan; 113(3):E309-18. PubMed ID: 26739568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role of Xist in X-Chromosome Dosage Compensation.
    Sahakyan A; Yang Y; Plath K
    Trends Cell Biol; 2018 Dec; 28(12):999-1013. PubMed ID: 29910081
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Female human primordial germ cells display X-chromosome dosage compensation despite the absence of X-inactivation.
    Chitiashvili T; Dror I; Kim R; Hsu FM; Chaudhari R; Pandolfi E; Chen D; Liebscher S; Schenke-Layland K; Plath K; Clark A
    Nat Cell Biol; 2020 Dec; 22(12):1436-1446. PubMed ID: 33257808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Live cell imaging of the nascent inactive X chromosome during the early differentiation process of naive ES cells towards epiblast stem cells.
    Guyochin A; Maenner S; Chu ET; Hentati A; Attia M; Avner P; Clerc P
    PLoS One; 2014; 9(12):e116109. PubMed ID: 25546018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. X chromosome inactivation in human parthenogenetic embryonic stem cells following prolonged passaging.
    Qi Q; Ding C; Hong P; Yang G; Xie Y; Wang J; Huang S; He K; Zhou C
    Int J Mol Med; 2015 Mar; 35(3):569-78. PubMed ID: 25524499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long Noncoding RNAs and X Chromosome Inactivation.
    Gontan C; Jonkers I; Gribnau J
    Prog Mol Subcell Biol; 2011; 51():43-64. PubMed ID: 21287133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNF12 initiates X-chromosome inactivation by targeting REX1 for degradation.
    Gontan C; Achame EM; Demmers J; Barakat TS; Rentmeester E; van IJcken W; Grootegoed JA; Gribnau J
    Nature; 2012 Apr; 485(7398):386-90. PubMed ID: 22596162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The pluripotency factor-bound intron 1 of Xist is dispensable for X chromosome inactivation and reactivation in vitro and in vivo.
    Minkovsky A; Barakat TS; Sellami N; Chin MH; Gunhanlar N; Gribnau J; Plath K
    Cell Rep; 2013 Mar; 3(3):905-18. PubMed ID: 23523354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early loss of Xist RNA expression and inactive X chromosome associated chromatin modification in developing primordial germ cells.
    de Napoles M; Nesterova T; Brockdorff N
    PLoS One; 2007 Sep; 2(9):e860. PubMed ID: 17848991
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The trans-activator RNF12 and cis-acting elements effectuate X chromosome inactivation independent of X-pairing.
    Barakat TS; Loos F; van Staveren S; Myronova E; Ghazvini M; Grootegoed JA; Gribnau J
    Mol Cell; 2014 Mar; 53(6):965-78. PubMed ID: 24613346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic and epigenetic features direct differential efficiency of Xist-mediated silencing at X-chromosomal and autosomal locations.
    Loda A; Brandsma JH; Vassilev I; Servant N; Loos F; Amirnasr A; Splinter E; Barillot E; Poot RA; Heard E; Gribnau J
    Nat Commun; 2017 Sep; 8(1):690. PubMed ID: 28947736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Germline potential of parthenogenetic haploid mouse embryonic stem cells.
    Leeb M; Walker R; Mansfield B; Nichols J; Smith A; Wutz A
    Development; 2012 Sep; 139(18):3301-5. PubMed ID: 22912412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Jpx RNA activates Xist by evicting CTCF.
    Sun S; Del Rosario BC; Szanto A; Ogawa Y; Jeon Y; Lee JT
    Cell; 2013 Jun; 153(7):1537-51. PubMed ID: 23791181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Xist RNA repeat E is essential for ASH2L recruitment to the inactive X and regulates histone modifications and escape gene expression.
    Yue M; Ogawa A; Yamada N; Charles Richard JL; Barski A; Ogawa Y
    PLoS Genet; 2017 Jul; 13(7):e1006890. PubMed ID: 28686623
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Haploid mouse embryonic stem cells: rapid genetic screening and germline transmission.
    Wutz A
    Annu Rev Cell Dev Biol; 2014; 30():705-22. PubMed ID: 25288120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new Xist allele driven by a constitutively active promoter is dominated by Xist locus environment and exhibits the parent-of-origin effects.
    Amakawa Y; Sakata Y; Hoki Y; Arata S; Shioda S; Fukagawa T; Sasaki H; Sado T
    Development; 2015 Dec; 142(24):4299-308. PubMed ID: 26511926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas9-mediated modulation of splicing efficiency reveals short splicing isoform of Xist RNA is sufficient to induce X-chromosome inactivation.
    Yue M; Ogawa Y
    Nucleic Acids Res; 2018 Mar; 46(5):e26. PubMed ID: 29237010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.