BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 34920334)

  • 1. Daphnetin inhibits corneal inflammation and neovascularization on a mouse model of corneal alkali burn.
    Yang T; Wang X; Guo L; Zheng F; Meng C; Zheng Y; Liu G
    Int Immunopharmacol; 2022 Feb; 103():108434. PubMed ID: 34920334
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Xanthatin inhibits corneal neovascularization by inhibiting the VEGFR2‑mediated STAT3/PI3K/Akt signaling pathway.
    Shen M; Zhou XZ; Ye L; Yuan Q; Shi C; Zhu PW; Jiang N; Ma MY; Yang QC; Shao Y
    Int J Mol Med; 2018 Aug; 42(2):769-778. PubMed ID: 29717775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AIP1 suppresses neovascularization by inhibiting the NOX4-induced NLRP3/NLRP6 imbalance in a murine corneal alkali burn model.
    Li Q; Hua X; Li L; Zhou X; Tian Y; Deng Y; Zhang M; Yuan X; Chi W
    Cell Commun Signal; 2022 May; 20(1):59. PubMed ID: 35524333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapamycin inhibits corneal inflammatory response and neovascularization in a mouse model of corneal alkali burn.
    Li J; Han J; Shi Y; Liu M
    Exp Eye Res; 2023 Aug; 233():109539. PubMed ID: 37315833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ginsenoside Rh2 inhibits vascular endothelial growth factor-induced corneal neovascularization.
    Zhang XP; Li KR; Yu Q; Yao MD; Ge HM; Li XM; Jiang Q; Yao J; Cao C
    FASEB J; 2018 Jul; 32(7):3782-3791. PubMed ID: 29465315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of pirfenidone in alkali burn rat cornea.
    Jiang N; Ma M; Li Y; Su T; Zhou XZ; Ye L; Yuan Q; Zhu P; Min Y; Shi W; Xu X; Lv J; Shao Y
    Int Immunopharmacol; 2018 Nov; 64():78-85. PubMed ID: 30153530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subconjunctival injection of antagomir-21 alleviates corneal neovascularization in a mouse model of alkali-burned cornea.
    Zhang Y; Zhang T; Ma X; Zou J
    Oncotarget; 2017 Feb; 8(7):11797-11808. PubMed ID: 28052006
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Estrella-Mendoza MF; Jiménez-Gómez F; López-Ornelas A; Pérez-Gutiérrez RM; Flores-Estrada J
    Nutrients; 2019 May; 11(5):. PubMed ID: 31137826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upadacitinib inhibits corneal inflammation and neovascularization by suppressing M1 macrophage infiltration in the corneal alkali burn model.
    Yu J; Shen Y; Luo J; Jin J; Li P; Feng P; Guan H
    Int Immunopharmacol; 2023 Mar; 116():109680. PubMed ID: 36739832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Therapeutic effects of zerumbone in an alkali-burned corneal wound healing model.
    Kim JW; Jeong H; Yang MS; Lim CW; Kim B
    Int Immunopharmacol; 2017 Jul; 48():126-134. PubMed ID: 28501766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Luteolin ameliorates cornea stromal collagen degradation and inflammatory damage in rats with corneal alkali burn.
    Wang H; Guo Z; Liu P; Yang X; Li Y; Lin Y; Zhao X; Liu Y
    Exp Eye Res; 2023 Jun; 231():109466. PubMed ID: 37059215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Blockade of the intermediate-conductance Ca(2+)-activated K+ channel inhibits the angiogenesis induced by epidermal growth factor in the treatment of corneal alkali burn.
    Yang H; Li X; Ma J; Lv X; Zhao S; Lang W; Zhang Y
    Exp Eye Res; 2013 May; 110():76-87. PubMed ID: 23482085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of nicotine on corneal wound healing following acute alkali burn.
    Kim JW; Lim CW; Kim B
    PLoS One; 2017; 12(6):e0179982. PubMed ID: 28644870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The long-term effect of tacrolimus on alkali burn-induced corneal neovascularization and inflammation surpasses that of anti-vascular endothelial growth factor.
    Chen L; Zhong J; Li S; Li W; Wang B; Deng Y; Yuan J
    Drug Des Devel Ther; 2018; 12():2959-2969. PubMed ID: 30254425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of NADPH oxidases in alkali burn-induced corneal injury.
    Gu XJ; Liu X; Chen YY; Zhao Y; Xu M; Han XJ; Liu QP; Yi JL; Li JM
    Int J Mol Med; 2016 Jul; 38(1):75-82. PubMed ID: 27221536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasminogen kringle 5 inhibits alkali-burn-induced corneal neovascularization.
    Zhang Z; Ma JX; Gao G; Li C; Luo L; Zhang M; Yang W; Jiang A; Kuang W; Xu L; Chen J; Liu Z
    Invest Ophthalmol Vis Sci; 2005 Nov; 46(11):4062-71. PubMed ID: 16249481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Efficacy of epigallocatechin gallate in treatment of alkali burn injury of murine cornea].
    Wu LQ; Lu M
    Zhejiang Da Xue Xue Bao Yi Xue Ban; 2015 Jan; 44(1):15-23. PubMed ID: 25851970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of multiple pathogenic pathways by histone deacetylase inhibitor SAHA in a corneal alkali-burn injury model.
    Li X; Zhou Q; Hanus J; Anderson C; Zhang H; Dellinger M; Brekken R; Wang S
    Mol Pharm; 2013 Jan; 10(1):307-18. PubMed ID: 23186311
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ophthalmic solution of a peroxisome proliferator-activated receptor gamma agonist prevents corneal inflammation in a rat alkali burn model.
    Uchiyama M; Shimizu A; Masuda Y; Nagasaka S; Fukuda Y; Takahashi H
    Mol Vis; 2013; 19():2135-50. PubMed ID: 24194635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. KH902, a recombinant human VEGF receptor fusion protein, reduced the level of placental growth factor in alkali burn induced-corneal neovascularization.
    Zhou AY; Bai YJ; Zhao M; Yu WZ; Li XX
    Ophthalmic Res; 2013; 50(3):180-6. PubMed ID: 24008241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.