These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 34920420)

  • 1. Assessment of L5-S1 anterior lumbar interbody fusion stability in the setting of lengthening posterior instrumentation constructs: a cadaveric biomechanical study.
    McGrath KA; Schmidt ES; Loss JG; Gillespie CM; Colbrunn RW; Butler RS; Steinmetz MP
    J Neurosurg Spine; 2022 Jun; 36(6):900-908. PubMed ID: 34920420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iliac screws may not be necessary in long-segment constructs with L5-S1 anterior lumbar interbody fusion: cadaveric study of stability and instrumentation strain.
    Hlubek RJ; Godzik J; Newcomb AGUS; Lehrman JN; de Andrada B; Bohl MA; Farber SH; Kelly BP; Turner JD
    Spine J; 2019 May; 19(5):942-950. PubMed ID: 30419290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanics of L5/S1 in Long Thoracolumbosacral Constructs: A Cadaveric Study.
    Lee BS; Walsh KM; Healy AT; Colbrunn R; Butler RS; Goodwin RC; Steinmetz MP; Mroz TE
    Global Spine J; 2018 Sep; 8(6):607-614. PubMed ID: 30202715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinematic efficacy of supplemental anterior lumbar interbody fusion at lumbosacral levels in thoracolumbosacral deformity correction with and without pedicle subtraction osteotomy at L3: an in vitro cadaveric study.
    Dahl BT; Harris JA; Gudipally M; Moldavsky M; Khalil S; Bucklen BS
    Eur Spine J; 2017 Nov; 26(11):2773-2781. PubMed ID: 28770402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomechanical analysis of sacral screw strain and range of motion in long posterior spinal fixation constructs: effects of lumbosacral fixation strategies in reducing sacral screw strains.
    Fleischer GD; Kim YJ; Ferrara LA; Freeman AL; Boachie-Adjei O
    Spine (Phila Pa 1976); 2012 Feb; 37(3):E163-9. PubMed ID: 21857409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Does the anterior column realignment technique influences the stresses on posterior instrumentation in sagittal imbalance correction? A biomechanical, finite-element analysis of L5-S1 ALIF and L3-4 lateral ACR.
    Panico M; Bertoli M; Villa TMT; Galbusera F; Messori M; La Maida GA; Misaggi B; Gallazzi E
    Spine Deform; 2023 Jan; 11(1):41-47. PubMed ID: 35999490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spinal instrumentation after complete resection of the last lumbar vertebra: an in vitro biomechanical study after L5 spondylectomy.
    Bartanusz V; Muzumdar A; Hussain M; Moldavsky M; Bucklen B; Khalil S
    Spine (Phila Pa 1976); 2011 Jun; 36(13):1017-21. PubMed ID: 21224772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transforaminal lumbar interbody fusion: the effect of various instrumentation techniques on the flexibility of the lumbar spine.
    Harris BM; Hilibrand AS; Savas PE; Pellegrino A; Vaccaro AR; Siegler S; Albert TJ
    Spine (Phila Pa 1976); 2004 Feb; 29(4):E65-70. PubMed ID: 15094547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Augmentation of anterior lumbar interbody fusion with anterior pedicle screw fixation: demonstration of novel constructs and evaluation of biomechanical stability in cadaveric specimens.
    Karim A; Mukherjee D; Ankem M; Gonzalez-Cruz J; Smith D; Nanda A
    Neurosurgery; 2006 Mar; 58(3):522-7; discussion 522-7. PubMed ID: 16528193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical analysis of stand-alone lumbar interbody cages versus 360° constructs: an in vitro and finite element investigation.
    Kiapour A; Massaad E; Joukar A; Hadzipasic M; Shankar GM; Goel VK; Shin JH
    J Neurosurg Spine; 2022 Jun; 36(6):928-936. PubMed ID: 34952510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Segmental motion adjacent to an instrumented lumbar fusion: the effect of extension of fusion to the sacrum.
    Untch C; Liu Q; Hart R
    Spine (Phila Pa 1976); 2004 Nov; 29(21):2376-81. PubMed ID: 15507798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supplemental rods are needed to maximally reduce rod strain across the lumbosacral junction with TLIF but not ALIF in long constructs.
    Godzik J; Hlubek RJ; Newcomb AGUS; Lehrman JN; de Andrada Pereira B; Farber SH; Lenke LG; Kelly BP; Turner JD
    Spine J; 2019 Jun; 19(6):1121-1131. PubMed ID: 30684758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical evaluation of lateral lumbar interbody fusion with secondary augmentation.
    Reis MT; Reyes PM; Bse ; Altun I; Newcomb AG; Singh V; Chang SW; Kelly BP; Crawford NR
    J Neurosurg Spine; 2016 Dec; 25(6):720-726. PubMed ID: 27391398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biomechanical assessment of anterior lumbar interbody fusion with an anterior lumbosacral fixation screw-plate: comparison to stand-alone anterior lumbar interbody fusion and anterior lumbar interbody fusion with pedicle screws in an unstable human cadaver model.
    Gerber M; Crawford NR; Chamberlain RH; Fifield MS; LeHuec JC; Dickman CA
    Spine (Phila Pa 1976); 2006 Apr; 31(7):762-8. PubMed ID: 16582849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomechanical comparison of iliac screws versus interbody femoral ring allograft on lumbosacral kinematics and sacral screw strain.
    Cunningham BW; Sefter JC; Hu N; Kim SW; Bridwell KH; McAfee PC
    Spine (Phila Pa 1976); 2010 Mar; 35(6):E198-205. PubMed ID: 20195199
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a novel in vitro cadaveric model for analysis of biomechanics and surgical treatment of Bertolotti syndrome.
    Golubovsky JL; Colbrunn RW; Klatte RS; Nagle TF; Briskin IN; Chakravarthy VB; Gillespie CM; Reith JD; Jasty N; Benzel EC; Steinmetz MP
    Spine J; 2020 Apr; 20(4):638-656. PubMed ID: 31669612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of double rods and interbody cages on quasistatic range of motion of the spine after lumbopelvic instrumentation.
    Ntilikina Y; Charles YP; Persohn S; Skalli W
    Eur Spine J; 2020 Dec; 29(12):2980-2989. PubMed ID: 32936405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing the stability of anterior lumbar interbody fusion: a biomechanical comparison of anterior plate versus posterior transpedicular instrumentation.
    Tzermiadianos MN; Mekhail A; Voronov LI; Zook J; Havey RM; Renner SM; Carandang G; Abjornson C; Patwardhan AG
    Spine (Phila Pa 1976); 2008 Jan; 33(2):E38-43. PubMed ID: 18197089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical effect of transforaminal lumbar interbody fusion and axial interbody threaded rod on range of motion and S1 screw loading in a destabilized L5-S1 spondylolisthesis model.
    Fleischer GD; Hart D; Ferrara LA; Freeman AL; Avidano EE
    Spine (Phila Pa 1976); 2014 Jan; 39(2):E82-8. PubMed ID: 24150429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revision strategies for single- and two-level total disc arthroplasty procedures: a biomechanical perspective.
    Cunningham BW; Hu N; Beatson HJ; Serhan H; Sefter JC; McAfee PC
    Spine J; 2009 Sep; 9(9):735-43. PubMed ID: 19477694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.