These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 34920704)
1. Enzymatic degradation is an effective means to reduce aflatoxin contamination in maize. Schmidt MA; Mao Y; Opoku J; Mehl HL BMC Biotechnol; 2021 Dec; 21(1):70. PubMed ID: 34920704 [TBL] [Abstract][Full Text] [Related]
2. Biological Control of Aflatoxin in Maize Grown in Serbia. Savić Z; Dudaš T; Loc M; Grahovac M; Budakov D; Jajić I; Krstović S; Barošević T; Krska R; Sulyok M; Stojšin V; Petreš M; Stankov A; Vukotić J; Bagi F Toxins (Basel); 2020 Mar; 12(3):. PubMed ID: 32150883 [No Abstract] [Full Text] [Related]
3. Inhibition of Aspergillus flavus Growth and Aflatoxin Production in Transgenic Maize Expressing the α-amylase Inhibitor from Lablab purpureus L. Rajasekaran K; Sayler RJ; Majumdar R; Sickler CM; Cary JW J Vis Exp; 2019 Feb; (144):. PubMed ID: 30829334 [TBL] [Abstract][Full Text] [Related]
4. Control of Aspergillus flavus growth and aflatoxin production in transgenic maize kernels expressing a tachyplesin-derived synthetic peptide, AGM182. Rajasekaran K; Sayler RJ; Sickler CM; Majumdar R; Jaynes JM; Cary JW Plant Sci; 2018 May; 270():150-156. PubMed ID: 29576068 [TBL] [Abstract][Full Text] [Related]
5. Downregulation of transcription factor aflR in Aspergillus flavus confers reduction to aflatoxin accumulation in transgenic maize with alteration of host plant architecture. Masanga JO; Matheka JM; Omer RA; Ommeh SC; Monda EO; Alakonya AE Plant Cell Rep; 2015 Aug; 34(8):1379-87. PubMed ID: 25895735 [TBL] [Abstract][Full Text] [Related]
6. RNA interference-based silencing of the alpha-amylase (amy1) gene in Aspergillus flavus decreases fungal growth and aflatoxin production in maize kernels. Gilbert MK; Majumdar R; Rajasekaran K; Chen ZY; Wei Q; Sickler CM; Lebar MD; Cary JW; Frame BR; Wang K Planta; 2018 Jun; 247(6):1465-1473. PubMed ID: 29541880 [TBL] [Abstract][Full Text] [Related]
8. Population structure and aflatoxin production by Aspergillus Sect. Flavi from maize in Nigeria and Ghana. Perrone G; Haidukowski M; Stea G; Epifani F; Bandyopadhyay R; Leslie JF; Logrieco A Food Microbiol; 2014 Aug; 41():52-9. PubMed ID: 24750813 [TBL] [Abstract][Full Text] [Related]
9. A USA-Africa collaborative strategy for identifying, characterizing, and developing maize germplasm with resistance to aflatoxin contamination. Menkir A; Brown RL; Bandyopadhyay R; Chen ZY; Cleveland TE Mycopathologia; 2006 Sep; 162(3):225-32. PubMed ID: 16944289 [TBL] [Abstract][Full Text] [Related]
10. Biotechnological advances for combating Aspergillus flavus and aflatoxin contamination in crops. Bhatnagar-Mathur P; Sunkara S; Bhatnagar-Panwar M; Waliyar F; Sharma KK Plant Sci; 2015 May; 234():119-32. PubMed ID: 25804815 [TBL] [Abstract][Full Text] [Related]
11. Characterization and competitive ability of non-aflatoxigenic Aspergillus flavus isolated from the maize agro-ecosystem in Argentina as potential aflatoxin biocontrol agents. Alaniz Zanon MS; Clemente MP; Chulze SN Int J Food Microbiol; 2018 Jul; 277():58-63. PubMed ID: 29684766 [TBL] [Abstract][Full Text] [Related]
12. Aspergillus section Flavi community structure in Zambia influences aflatoxin contamination of maize and groundnut. Kachapulula PW; Akello J; Bandyopadhyay R; Cotty PJ Int J Food Microbiol; 2017 Nov; 261():49-56. PubMed ID: 28915412 [TBL] [Abstract][Full Text] [Related]
13. Aflatoxin-producing fungi associated with pre-harvest maize contamination in Uganda. Sserumaga JP; Ortega-Beltran A; Wagacha JM; Mutegi CK; Bandyopadhyay R Int J Food Microbiol; 2020 Jan; 313():108376. PubMed ID: 31731141 [TBL] [Abstract][Full Text] [Related]
14. Performance of Broilers Fed with Maize Colonized by Either Toxigenic or Atoxigenic Strains of Aikore MOS; Ortega-Beltran A; Eruvbetine D; Atehnkeng J; Falade TDO; Cotty PJ; Bandyopadhyay R Toxins (Basel); 2019 Sep; 11(10):. PubMed ID: 31561495 [TBL] [Abstract][Full Text] [Related]
15. Cultural and Genetic Approaches to Manage Aflatoxin Contamination: Recent Insights Provide Opportunities for Improved Control. Ojiambo PS; Battilani P; Cary JW; Blum BH; Carbone I Phytopathology; 2018 Sep; 108(9):1024-1037. PubMed ID: 29869954 [TBL] [Abstract][Full Text] [Related]
16. Genetic diversity of aflatoxin-producing Aspergillus flavus isolated from selected groundnut growing agro-ecological zones of Uganda. Acur A; Arias RS; Odongo S; Tuhaise S; Ssekandi J; Adriko J; Muhanguzi D; Buah S; Kiggundu A BMC Microbiol; 2020 Aug; 20(1):252. PubMed ID: 32795262 [TBL] [Abstract][Full Text] [Related]
17. Environmental distribution and genetic diversity of vegetative compatibility groups determine biocontrol strategies to mitigate aflatoxin contamination of maize by Aspergillus flavus. Atehnkeng J; Donner M; Ojiambo PS; Ikotun B; Augusto J; Cotty PJ; Bandyopadhyay R Microb Biotechnol; 2016 Jan; 9(1):75-88. PubMed ID: 26503309 [TBL] [Abstract][Full Text] [Related]
18. Characterization of Aspergilli from dried red chilies (Capsicum spp.): Insights into the etiology of aflatoxin contamination. Singh P; Cotty PJ Int J Food Microbiol; 2019 Jan; 289():145-153. PubMed ID: 30243147 [TBL] [Abstract][Full Text] [Related]
19. Host Induced Gene Silencing Targeting Raruang Y; Omolehin O; Hu D; Wei Q; Han ZQ; Rajasekaran K; Cary JW; Wang K; Chen ZY Front Microbiol; 2020; 11():754. PubMed ID: 32411110 [TBL] [Abstract][Full Text] [Related]
20. Delivery systems for biological control agents to manage aflatoxin contamination of pre-harvest maize. Lyn ME; Abbas HK; Zablotowicz RM; Johnson BJ Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2009 Mar; 26(3):381-7. PubMed ID: 19680912 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]