These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 34920726)
41. A Fusion-Based Approach for Breast Ultrasound Image Classification Using Multiple-ROI Texture and Morphological Analyses. Daoud MI; Bdair TM; Al-Najar M; Alazrai R Comput Math Methods Med; 2016; 2016():6740956. PubMed ID: 28127383 [TBL] [Abstract][Full Text] [Related]
42. Fully multi-target segmentation for breast ultrasound image based on fully convolutional network. Zhang Y; Liu Y; Cheng H; Li Z; Liu C Med Biol Eng Comput; 2020 Sep; 58(9):2049-2061. PubMed ID: 32638276 [TBL] [Abstract][Full Text] [Related]
43. A hierarchical knowledge-based approach for retrieving similar medical images described with semantic annotations. Kurtz C; Beaulieu CF; Napel S; Rubin DL J Biomed Inform; 2014 Jun; 49():227-44. PubMed ID: 24632078 [TBL] [Abstract][Full Text] [Related]
44. Bimodal Multiparameter-Based Approach for Benign-Malignant Classification of Breast Tumors. Ara SR; Alam F; Rahman MH; Akhter S; Awwal R; Hasan K Ultrasound Med Biol; 2015 Jul; 41(7):2022-38. PubMed ID: 25913281 [TBL] [Abstract][Full Text] [Related]
45. 2-D ultrasound strain images for breast cancer diagnosis using nonrigid subregion registration. Chen CJ; Chang RF; Moon WK; Chen DR; Wu HK Ultrasound Med Biol; 2006 Jun; 32(6):837-46. PubMed ID: 16785006 [TBL] [Abstract][Full Text] [Related]
46. Classification of malignant tumours in breast ultrasound using unsupervised machine learning approaches. Shia WC; Lin LS; Chen DR Sci Rep; 2021 Jan; 11(1):1418. PubMed ID: 33446841 [TBL] [Abstract][Full Text] [Related]
47. Diagnosis of solid breast tumors using vessel analysis in three-dimensional power Doppler ultrasound images. Huang YH; Chen JH; Chang YC; Huang CS; Moon WK; Kuo WJ; Lai KJ; Chang RF J Digit Imaging; 2013 Aug; 26(4):731-9. PubMed ID: 23296913 [TBL] [Abstract][Full Text] [Related]
48. Feature Pyramid Nonlocal Network With Transform Modal Ensemble Learning for Breast Tumor Segmentation in Ultrasound Images. Tang P; Yang X; Nan Y; Xiang S; Liang Q IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Dec; 68(12):3549-3559. PubMed ID: 34280097 [TBL] [Abstract][Full Text] [Related]
49. Texture Analysis Based on Auto-Mutual Information for Classifying Breast Lesions with Ultrasound. Gómez-Flores W; Rodríguez-Cristerna A; de Albuquerque Pereira WC Ultrasound Med Biol; 2019 Aug; 45(8):2213-2225. PubMed ID: 31097332 [TBL] [Abstract][Full Text] [Related]
50. Computer-aided diagnosis system for breast ultrasound images using deep learning. Tanaka H; Chiu SW; Watanabe T; Kaoku S; Yamaguchi T Phys Med Biol; 2019 Dec; 64(23):235013. PubMed ID: 31645021 [TBL] [Abstract][Full Text] [Related]
51. [A medical image semantic modeling based on hierarchical Bayesian networks]. Lin C; Ma L; Yin J; Chen J Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2009 Apr; 26(2):400-4. PubMed ID: 19499811 [TBL] [Abstract][Full Text] [Related]
52. Semi-supervised GAN-based Radiomics Model for Data Augmentation in Breast Ultrasound Mass Classification. Pang T; Wong JHD; Ng WL; Chan CS Comput Methods Programs Biomed; 2021 May; 203():106018. PubMed ID: 33714900 [TBL] [Abstract][Full Text] [Related]
53. Tumor classification in automated breast ultrasound (ABUS) based on a modified extracting feature network. Zhuang Z; Ding W; Zhuang S; Joseph Raj AN; Wang J; Zhou W; Wei C Comput Med Imaging Graph; 2021 Jun; 90():101925. PubMed ID: 33915383 [TBL] [Abstract][Full Text] [Related]
54. Supplemental use of optical diffusion breast imaging for differentiation between benign and malignant breast lesions. Moon JH; Kim HH; Shin HJ; Kim H; Ko MS; Gong G AJR Am J Roentgenol; 2011 Sep; 197(3):732-9. PubMed ID: 21862818 [TBL] [Abstract][Full Text] [Related]
55. Computer-aided diagnosis for the classification of breast masses in automated whole breast ultrasound images. Moon WK; Shen YW; Huang CS; Chiang LR; Chang RF Ultrasound Med Biol; 2011 Apr; 37(4):539-48. PubMed ID: 21420580 [TBL] [Abstract][Full Text] [Related]
56. Computer-aided analysis of ultrasound elasticity images for classification of benign and malignant breast masses. Moon WK; Choi JW; Cho N; Park SH; Chang JM; Jang M; Kim KG AJR Am J Roentgenol; 2010 Dec; 195(6):1460-5. PubMed ID: 21098210 [TBL] [Abstract][Full Text] [Related]
57. Computer-aided diagnosis based on quantitative elastographic features with supersonic shear wave imaging. Xiao Y; Zeng J; Niu L; Zeng Q; Wu T; Wang C; Zheng R; Zheng H Ultrasound Med Biol; 2014 Feb; 40(2):275-86. PubMed ID: 24268454 [TBL] [Abstract][Full Text] [Related]
58. Deep feature classification of angiomyolipoma without visible fat and renal cell carcinoma in abdominal contrast-enhanced CT images with texture image patches and hand-crafted feature concatenation. Lee H; Hong H; Kim J; Jung DC Med Phys; 2018 Apr; 45(4):1550-1561. PubMed ID: 29474742 [TBL] [Abstract][Full Text] [Related]
59. Boundary-aware Semi-supervised Deep Learning for Breast Ultrasound Computer-Aided Diagnosis. Zhang E; Seiler S; Chen M; Lu W; Gu X Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():947-950. PubMed ID: 31946050 [TBL] [Abstract][Full Text] [Related]
60. An Artificial Immune System-Based Support Vector Machine Approach for Classifying Ultrasound Breast Tumor Images. Wu WJ; Lin SW; Moon WK J Digit Imaging; 2015 Oct; 28(5):576-85. PubMed ID: 25561066 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]