These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 34921332)

  • 1. Regulating the Electron Localization of Metallic Bismuth for Boosting CO
    Wu D; Feng R; Xu C; Sui PF; Zhang J; Fu XZ; Luo JL
    Nanomicro Lett; 2021 Dec; 14(1):38. PubMed ID: 34921332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boron Dopant Modulated Electron Localization of Tin Oxide for Efficient Electrochemical CO
    Zhong X; Yang T; Liang S; Zhong Z; Deng H
    Small; 2023 Nov; 19(47):e2303185. PubMed ID: 37490550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boron Dopant Induced Electron-Rich Bismuth for Electrochemical CO
    Chen X; Chen H; Zhou W; Zhang Q; Yang Z; Li Z; Yang F; Wang D; Ye J; Liu L
    Small; 2021 Jul; 17(29):e2101128. PubMed ID: 34137169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metal-Organic Framework-Derived Carbon Nanorods Encapsulating Bismuth Oxides for Rapid and Selective CO
    Deng P; Yang F; Wang Z; Chen S; Zhou Y; Zaman S; Xia BY
    Angew Chem Int Ed Engl; 2020 Jun; 59(27):10807-10813. PubMed ID: 32232890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decorating graphdiyne on ultrathin bismuth subcarbonate nanosheets to promote CO
    Tang SF; Lu XL; Zhang C; Wei ZW; Si R; Lu TB
    Sci Bull (Beijing); 2021 Aug; 66(15):1533-1541. PubMed ID: 36654282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrangea-like Superstructured Micro/Nanoreactor of Topotactically Converted Ultrathin Bismuth Nanosheets for Highly Active CO
    Peng CJ; Zeng G; Ma DD; Cao C; Zhou S; Wu XT; Zhu QL
    ACS Appl Mater Interfaces; 2021 May; 13(17):20589-20597. PubMed ID: 33878860
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Boosting electrochemical CO
    Xue J; Fu X; Geng S; Wang K; Li Z; Li M
    J Environ Manage; 2023 Sep; 342():118354. PubMed ID: 37315461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amphipathic Surfactant on Reconstructed Bismuth Enables Industrial-Level Electroreduction of CO
    Chen Y; Zhang Y; Li Z; Liu M; Wu Q; Lo TWB; Hu Z; Lee LYS
    ACS Nano; 2024 Jul; ():. PubMed ID: 38991112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase Interface Regulating on Amorphous/Crystalline Bismuth Catalyst for Boosted Electrocatalytic CO
    Qin C; Xu L; Zhang J; Wang J; He J; Liu D; Yang J; Xiao JD; Chen X; Li HB; Yang Z; Wang J
    ACS Appl Mater Interfaces; 2023 Oct; 15(40):47016-47024. PubMed ID: 37768597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active-site stabilized Bi metal-organic framework-based catalyst for highly active and selective electroreduction of CO
    Cao L; Huang J; Wu X; Ma B; Xu Q; Zhong Y; Wu Y; Sun M; Yu L
    Nanoscale; 2023 Dec; 15(48):19522-19532. PubMed ID: 37991432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Boosting CO
    Jing XT; Zhu Z; Chen LW; Liu D; Huang HZ; Tian WJ; Yin AX
    ACS Appl Mater Interfaces; 2023 Apr; 15(16):20317-20324. PubMed ID: 37057844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile synthesis of a bismuth nanostructure with enhanced selectivity for electrochemical conversion of CO
    Lu P; Gao D; He H; Wang Q; Liu Z; Dipazir S; Yuan M; Zu W; Zhang G
    Nanoscale; 2019 Apr; 11(16):7805-7812. PubMed ID: 30958497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Situ Bismuth Nanosheet Assembly for Highly Selective Electrocatalytic CO
    Peng CJ; Wu XT; Zeng G; Zhu QL
    Chem Asian J; 2021 Jun; 16(12):1539-1544. PubMed ID: 33929102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Boosting Formate Production from CO
    Zou J; Lee CY; Wallace GG
    Adv Sci (Weinh); 2021 Aug; 8(15):e2004521. PubMed ID: 34050629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic structural modulation of bismuth catalysts induced by sulfur and oxygen co-doping for promoting CO
    Shao X; Sun X; Huang Q; Yi J; Zhang J; Liu Y
    Dalton Trans; 2022 May; 51(18):7223-7233. PubMed ID: 35471422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coordinating the Edge Defects of Bismuth with Sulfur for Enhanced CO
    Lv L; Lu R; Zhu J; Yu R; Zhang W; Cui E; Chen X; Dai Y; Cui L; Li J; Zhou L; Chen W; Wang Z; Mai L
    Angew Chem Int Ed Engl; 2023 Jun; 62(25):e202303117. PubMed ID: 37078760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A conductive catecholate-based framework coordinated with unsaturated bismuth boosts CO
    Gao Z; Hou M; Shi Y; Li L; Sun Q; Yang S; Jiang Z; Yang W; Zhang Z; Hu W
    Chem Sci; 2023 Jun; 14(25):6860-6866. PubMed ID: 37389251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bi
    Feng X; Zou H; Zheng R; Wei W; Wang R; Zou W; Lim G; Hong J; Duan L; Chen H
    Nano Lett; 2022 Feb; 22(4):1656-1664. PubMed ID: 35119284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bismuth oxyiodide microflower-derived catalysts for efficient CO
    Liu PF; Zu MY; Zheng LR; Yang HG
    Chem Commun (Camb); 2019 Oct; 55(82):12392-12395. PubMed ID: 31565702
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interface-Induced Electrocatalytic Enhancement of CO
    Sui PF; Xu C; Zhu MN; Liu S; Liu Q; Luo JL
    Small; 2022 Jan; 18(1):e2105682. PubMed ID: 34786849
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.