These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
103 related articles for article (PubMed ID: 34921339)
1. Applicability of recurrent neural networks to retrieve missing runoff records: challenges and opportunities in Turkey. Alsavaf Y; Teksoy A Environ Monit Assess; 2021 Dec; 194(1):28. PubMed ID: 34921339 [TBL] [Abstract][Full Text] [Related]
2. Extent of detection of hidden relationships among different hydrological variables during floods using data-driven models. Sawaf MBA; Kawanisi K; Jlilati MN; Xiao C; Bahreinimotlagh M Environ Monit Assess; 2021 Oct; 193(11):692. PubMed ID: 34609643 [TBL] [Abstract][Full Text] [Related]
3. Modelling of dissolved oxygen content using artificial neural networks: Danube River, North Serbia, case study. Antanasijević D; Pocajt V; Povrenović D; Perić-Grujić A; Ristić M Environ Sci Pollut Res Int; 2013 Dec; 20(12):9006-13. PubMed ID: 23764983 [TBL] [Abstract][Full Text] [Related]
4. Application of ANN and ANFIS models for reconstructing missing flow data. Dastorani MT; Moghadamnia A; Piri J; Rico-Ramirez M Environ Monit Assess; 2010 Jul; 166(1-4):421-34. PubMed ID: 19543999 [TBL] [Abstract][Full Text] [Related]
5. Modelling the effects of meteorological parameters on water temperature using artificial neural networks. Temizyurek M; Dadaser-Celik F Water Sci Technol; 2018 Mar; 77(5-6):1724-1733. PubMed ID: 29595175 [TBL] [Abstract][Full Text] [Related]
6. Estimation of suspended sediment concentration from turbidity measurements using artificial neural networks. Bayram A; Kankal M; Onsoy H Environ Monit Assess; 2012 Jul; 184(7):4355-65. PubMed ID: 21814718 [TBL] [Abstract][Full Text] [Related]
7. Spatial scale effect on sediment dynamics in basin-wide floods within a typical agro-watershed: A case study in the hilly loess region of the Chinese Loess Plateau. Zhang LT; Li ZB; Wang SS Sci Total Environ; 2016 Dec; 572():476-486. PubMed ID: 27544352 [TBL] [Abstract][Full Text] [Related]
8. An efficient strategy for predicting river dissolved oxygen concentration: application of deep recurrent neural network model. Moghadam SV; Sharafati A; Feizi H; Marjaie SMS; Asadollah SBHS; Motta D Environ Monit Assess; 2021 Nov; 193(12):798. PubMed ID: 34773156 [TBL] [Abstract][Full Text] [Related]
9. Hourly Water Level Forecasting in an Hydroelectric Basin Using Spatial Interpolation and Artificial Intelligence. Tucci M Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616800 [TBL] [Abstract][Full Text] [Related]
10. Prediction of the motion of chest internal points using a recurrent neural network trained with real-time recurrent learning for latency compensation in lung cancer radiotherapy. Pohl M; Uesaka M; Demachi K; Bhusal Chhatkuli R Comput Med Imaging Graph; 2021 Jul; 91():101941. PubMed ID: 34265553 [TBL] [Abstract][Full Text] [Related]
11. Climatic variation and runoff from partially-glacierised Himalayan tributary basins of the Ganges. Collins DN; Davenport JL; Stoffel M Sci Total Environ; 2013 Dec; 468-469 Suppl():S48-59. PubMed ID: 24296050 [TBL] [Abstract][Full Text] [Related]
12. Living with uncertainty: climate change, river flows and water resource management in Scotland. Werritty A Sci Total Environ; 2002 Jul; 294(1-3):29-40. PubMed ID: 12169009 [TBL] [Abstract][Full Text] [Related]
13. Interpreting a recurrent neural network's predictions of ICU mortality risk. Ho LV; Aczon M; Ledbetter D; Wetzel R J Biomed Inform; 2021 Feb; 114():103672. PubMed ID: 33422663 [TBL] [Abstract][Full Text] [Related]
14. Modeling daily water temperature for rivers: comparison between adaptive neuro-fuzzy inference systems and artificial neural networks models. Zhu S; Heddam S; Nyarko EK; Hadzima-Nyarko M; Piccolroaz S; Wu S Environ Sci Pollut Res Int; 2019 Jan; 26(1):402-420. PubMed ID: 30406582 [TBL] [Abstract][Full Text] [Related]
15. Estimation of river flow using CubeSats remote sensing. Junqueira AM; Mao F; Mendes TSG; Simões SJC; Balestieri JAP; Hannah DM Sci Total Environ; 2021 Sep; 788():147762. PubMed ID: 34022571 [TBL] [Abstract][Full Text] [Related]
16. Generalized Recurrent Neural Network accommodating Dynamic Causal Modeling for functional MRI analysis. Wang Y; Wang Y; Lui YW Neuroimage; 2018 Sep; 178():385-402. PubMed ID: 29782993 [TBL] [Abstract][Full Text] [Related]
17. Prediction and assessment of drought effects on surface water quality using artificial neural networks: case study of Zayandehrud River, Iran. Safavi HR; Malek Ahmadi K J Environ Health Sci Eng; 2015; 13():68. PubMed ID: 26451249 [TBL] [Abstract][Full Text] [Related]
18. Assessment of a Deep Learning Model to Predict Hepatocellular Carcinoma in Patients With Hepatitis C Cirrhosis. Ioannou GN; Tang W; Beste LA; Tincopa MA; Su GL; Van T; Tapper EB; Singal AG; Zhu J; Waljee AK JAMA Netw Open; 2020 Sep; 3(9):e2015626. PubMed ID: 32870314 [TBL] [Abstract][Full Text] [Related]
19. A system of recurrent neural networks for modularising, parameterising and dynamic analysis of cell signalling networks. Samarasinghe S; Ling H Biosystems; 2017; 153-154():6-25. PubMed ID: 28174135 [TBL] [Abstract][Full Text] [Related]
20. Hydrology of mountainous areas in the upper Indus Basin, Northern Pakistan with the perspective of climate change. Ahmad Z; Hafeez M; Ahmad I Environ Monit Assess; 2012 Sep; 184(9):5255-74. PubMed ID: 22109645 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]