BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 34921895)

  • 1. Computer-aided segmentation on MRI for prostate radiotherapy, Part I: Quantifying human interobserver variability of the prostate and organs at risk and its impact on radiation dosimetry.
    Sanders JW; Mok H; Hanania AN; Venkatesan AM; Tang C; Bruno TL; Thames HD; Kudchadker RJ; Frank SJ
    Radiother Oncol; 2022 Apr; 169():124-131. PubMed ID: 34921895
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncertainty in magnetic resonance imaging-based prostate postimplant dosimetry: Results of a 10-person human observer study, and comparisons with automatic postimplant dosimetry.
    Sanders JW; Tang C; Kudchadker RJ; Venkatesan AM; Mok H; Hanania AN; Thames HD; Bruno TL; Starks C; Santiago E; Cunningham M; Frank SJ
    Brachytherapy; 2023; 22(6):822-832. PubMed ID: 37716820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer-aided segmentation on MRI for prostate radiotherapy, part II: Comparing human and computer observer populations and the influence of annotator variability on algorithm variability.
    Sanders JW; Mok H; Hanania AN; Venkatesan AM; Tang C; Bruno TL; Thames HD; Kudchadker RJ; Frank SJ
    Radiother Oncol; 2022 Apr; 169():132-139. PubMed ID: 34979213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interobserver variability of 3.0-tesla and 1.5-tesla magnetic resonance imaging/computed tomography fusion image-based post-implant dosimetry of prostate brachytherapy.
    Watanabe K; Katayama N; Katsui K; Matsushita T; Takamoto A; Ihara H; Nasu Y; Takemoto M; Kuroda M; Kanazawa S
    J Radiat Res; 2019 Jul; 60(4):483-489. PubMed ID: 31083713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine Segmentation of Pelvic Anatomy in MRI-Assisted Radiosurgery (MARS) for Prostate Cancer Brachytherapy.
    Sanders JW; Lewis GD; Thames HD; Kudchadker RJ; Venkatesan AM; Bruno TL; Ma J; Pagel MD; Frank SJ
    Int J Radiat Oncol Biol Phys; 2020 Dec; 108(5):1292-1303. PubMed ID: 32634543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of interobserver differences in postimplant dosimetry following prostate brachytherapy and the efficacy of CT/MRI fusion imaging.
    Aoki M; Yorozu A; Dokiya T
    Jpn J Radiol; 2009 Nov; 27(9):342-7. PubMed ID: 19943144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CT- and MRI-based seed localization in postimplant evaluation after prostate brachytherapy.
    De Brabandere M; Al-Qaisieh B; De Wever L; Haustermans K; Kirisits C; Moerland MA; Oyen R; Rijnders A; Van den Heuvel F; Siebert FA
    Brachytherapy; 2013; 12(6):580-8. PubMed ID: 23876358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of interobserver variability on transrectal ultrasonography-based postimplant dosimetry.
    Xue J; Waterman F; Handler J; Gressen E
    Brachytherapy; 2006; 5(3):174-82. PubMed ID: 16864069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quality comparison between three-dimensional T2-weighted SPACE and two-dimensional T2-weighted turbo spin echo magnetic resonance images for the brachytherapy planning evaluation of prostate and periprostatic anatomy.
    Bathala TK; Venkatesan AM; Ma J; Bhosale P; Wei W; Kudchadker RJ; Wang J; Anscher MS; Tang C; Bruno TL; Frank SJ; Szklaruk J
    Brachytherapy; 2020; 19(4):484-490. PubMed ID: 32402544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interobserver variability in rectum contouring in high-dose-rate brachytherapy for prostate cancer: A multi-institutional prospective analysis.
    Chicas-Sett R; Celada-Alvarez F; Roldan S; Rodriguez-Villalba S; Santos-Olias M; Soler-Catalan P; Ibanez-Rosello B; Arribas L; Tormo A; Benlloch JM; Perez-Calatayud J
    Brachytherapy; 2018; 17(1):208-213. PubMed ID: 29113782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlation between real-time intraoperative and postoperative dosimetry and its implications on intraoperative planning.
    Yan C; Huq MS; Heron DE; Beriwal S; Wynn RB
    Brachytherapy; 2019; 18(3):338-347. PubMed ID: 30655047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Changes in target volumes definition by using MRI for prostate bed radiotherapy planning--preliminary results].
    Sefrová J; Paluska ; Odrázka K; Belobradek Z; Hoffmann P; Prosvic P; Brod'ák M; Louda M; Macingová Z; Vosmik M
    Klin Onkol; 2010; 23(4):256-63. PubMed ID: 20806824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. T2*-weighted image/T2-weighted image fusion in postimplant dosimetry of prostate brachytherapy.
    Katayama N; Takemoto M; Yoshio K; Katsui K; Uesugi T; Nasu Y; Matsushita T; Kaji M; Kumon H; Kanazawa S
    J Radiat Res; 2011; 52(5):680-4. PubMed ID: 21857148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dosimetric and workflow impact of synthetic-MRI use in prostate high-dose-rate brachytherapy.
    Podgorsak AR; Venkatesulu BP; Abuhamad M; Harkenrider MM; Solanki AA; Roeske JC; Kang H
    Brachytherapy; 2023; 22(5):686-696. PubMed ID: 37316376
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dosimetric evaluation of MRI-to-ultrasound automated image registration algorithms for prostate brachytherapy.
    Shaaer A; Paudel M; Davidson M; Semple M; Nicolae A; Mendez LC; Chung H; Loblaw A; Tseng CL; Morton G; Ravi A
    Brachytherapy; 2020; 19(5):599-606. PubMed ID: 32712028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of Prostate Bed Delineation Consensus Guidelines for Magnetic Resonance Image-Guided Radiotherapy and Assessment of Its Effect on Interobserver Variability.
    Sritharan K; Akhiat H; Cahill D; Choi S; Choudhury A; Chung P; Diaz J; Dysager L; Hall W; Huddart R; Kerkmeijer LGW; Lawton C; Mohajer J; Murray J; Nyborg CJ; Pos FJ; Rigo M; Schytte T; Sidhom M; Sohaib A; Tan A; van der Voort van Zyp J; Vesprini D; Zelefsky MJ; Tree AC
    Int J Radiat Oncol Biol Phys; 2024 Feb; 118(2):378-389. PubMed ID: 37633499
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of MRI-based postimplant dosimetric assessment in prostate brachytherapy using contrast-enhanced T1-weighted images.
    Ohashi T; Momma T; Yamashita S; Nagatsuma K; Kanai K; Kitagawa K; Takahashi S; Hanada T; Yorozu A; Shigematsu N
    Brachytherapy; 2012; 11(6):468-75. PubMed ID: 22330102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity of clinically relevant dosimetric parameters to contouring uncertainty in postimplant dosimetry of low-dose-rate prostate permanent seed brachytherapy.
    Mashouf S; Safigholi H; Merino T; Soliman A; Ravi A; Morton G; Song WY
    Brachytherapy; 2016; 15(6):774-779. PubMed ID: 27720310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prostate post-implant dosimetry: interobserver variability in seed localisation, contouring and fusion.
    De Brabandere M; Hoskin P; Haustermans K; Van den Heuvel F; Siebert FA
    Radiother Oncol; 2012 Aug; 104(2):192-8. PubMed ID: 22857857
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MRI-assisted radiosurgery: A quality assurance nomogram for palladium-103 and iodine-125 prostate brachytherapy.
    Hanania AN; Kudchadker RJ; Bruno TL; Tang C; Anscher MS; Frank SJ
    Brachytherapy; 2020; 19(1):38-42. PubMed ID: 31812590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.