BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 34921973)

  • 1. Copper arsenite-complexed Fenton-like nanoparticles as oxidative stress-amplifying anticancer agents.
    Lee G; Kim CW; Choi JR; Min KH; Lee HJ; Kwack KH; Lee HW; Lee JH; Jeong SY; Chang K; Lee SC
    J Control Release; 2022 Jan; 341():646-660. PubMed ID: 34921973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ferritin-nanocaged copper arsenite minerals with oxidative stress-amplifying activity for targeted cancer therapy.
    Lee KK; Kim JW; Lee CS; Lee SC
    J Control Release; 2023 Sep; 361():350-360. PubMed ID: 37536548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nano-Fenton Reactors as a New Class of Oxidative Stress Amplifying Anticancer Therapeutic Agents.
    Kwon B; Han E; Yang W; Cho W; Yoo W; Hwang J; Kwon BM; Lee D
    ACS Appl Mater Interfaces; 2016 Mar; 8(9):5887-97. PubMed ID: 26888039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antioxidant vs. Prooxidant Properties of the Flavonoid, Kaempferol, in the Presence of Cu(II) Ions: A ROS-Scavenging Activity, Fenton Reaction and DNA Damage Study.
    Simunkova M; Barbierikova Z; Jomova K; Hudecova L; Lauro P; Alwasel SH; Alhazza I; Rhodes CJ; Valko M
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33562744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Reactive Oxygen Species Levels by an Active Benzothiazole Complex-Mediated Fenton Reaction for Highly Effective Antitumor Therapy.
    You C; Wu H; Gao Z; Chen F; Ning L; Zhang Y; Dong Y; Sun B; Wang F
    Mol Pharm; 2019 Dec; 16(12):4929-4939. PubMed ID: 31661289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrasmall Cu
    Hu R; Fang Y; Huo M; Yao H; Wang C; Chen Y; Wu R
    Biomaterials; 2019 Jun; 206():101-114. PubMed ID: 30927714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multifunctional Polymeric Micelles with Amplified Fenton Reaction for Tumor Ablation.
    Wang Y; Yin W; Ke W; Chen W; He C; Ge Z
    Biomacromolecules; 2018 Jun; 19(6):1990-1998. PubMed ID: 29420880
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Copper-Cysteamine Nanoparticles as a Heterogeneous Fenton-Like Catalyst for Highly Selective Cancer Treatment.
    Chudal L; Pandey NK; Phan J; Johnson O; Lin L; Yu H; Shu Y; Huang Z; Xing M; Liu JP; Chen ML; Chen W
    ACS Appl Bio Mater; 2020 Mar; 3(3):1804-1814. PubMed ID: 35021670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of Copper Peroxide Nanodots for H
    Lin LS; Huang T; Song J; Ou XY; Wang Z; Deng H; Tian R; Liu Y; Wang JF; Liu Y; Yu G; Zhou Z; Wang S; Niu G; Yang HH; Chen X
    J Am Chem Soc; 2019 Jun; 141(25):9937-9945. PubMed ID: 31199131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-oxidative removal of arsenite and tetracycline based on a heterogeneous Fenton-like reaction using iron nanoparticles-impregnated biochar.
    Fu D; Kurniawan TA; Li H; Wang H; Wang Y; Li Q
    Environ Pollut; 2021 Dec; 290():118062. PubMed ID: 34482246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanocatalytic Theranostics with Glutathione Depletion and Enhanced Reactive Oxygen Species Generation for Efficient Cancer Therapy.
    Fu LH; Wan Y; Qi C; He J; Li C; Yang C; Xu H; Lin J; Huang P
    Adv Mater; 2021 Feb; 33(7):e2006892. PubMed ID: 33394515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual pH-sensitive oxidative stress generating micellar nanoparticles as a novel anticancer therapeutic agent.
    Park S; Kwon B; Yang W; Han E; Yoo W; Kwon BM; Lee D
    J Control Release; 2014 Dec; 196():19-27. PubMed ID: 25278257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated Nanoparticles To Synergistically Elevate Tumor Oxidative Stress and Suppress Antioxidative Capability for Amplified Oxidation Therapy.
    Yin W; Li J; Ke W; Zha Z; Ge Z
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29538-29546. PubMed ID: 28799751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Tumor-Specific Disulfiram Chemotherapy by
    Wu W; Yu L; Jiang Q; Huo M; Lin H; Wang L; Chen Y; Shi J
    J Am Chem Soc; 2019 Jul; 141(29):11531-11539. PubMed ID: 31251050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymeric micellar nanoplatforms for Fenton reaction as a new class of antibacterial agents.
    Park SC; Kim NH; Yang W; Nah JW; Jang MK; Lee D
    J Control Release; 2016 Jan; 221():37-47. PubMed ID: 26639177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Facile construction of bioreducible crosslinked polypeptide micelles for enhanced cancer combination therapy.
    Ruttala HB; Chitrapriya N; Kaliraj K; Ramasamy T; Shin WH; Jeong JH; Kim JR; Ku SK; Choi HG; Yong CS; Kim JO
    Acta Biomater; 2017 Nov; 63():135-149. PubMed ID: 28890258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metals, toxicity and oxidative stress.
    Valko M; Morris H; Cronin MT
    Curr Med Chem; 2005; 12(10):1161-208. PubMed ID: 15892631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-Assembled Copper-Amino Acid Nanoparticles for in Situ Glutathione "AND" H
    Ma B; Wang S; Liu F; Zhang S; Duan J; Li Z; Kong Y; Sang Y; Liu H; Bu W; Li L
    J Am Chem Soc; 2019 Jan; 141(2):849-857. PubMed ID: 30541274
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Li T; He F; Liu B; Jia T; Shao B; Zhao R; Zhu H; Yang D; Gai S; Yang P
    ACS Appl Mater Interfaces; 2020 Dec; 12(51):56886-56897. PubMed ID: 33290033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endogenous Copper for Nanocatalytic Oxidative Damage and Self-Protection Pathway Breakage of Cancer.
    Guo Y; Xu Y; Bao Q; Shen C; Ni D; Hu P; Shi J
    ACS Nano; 2021 Oct; 15(10):16286-16297. PubMed ID: 34652919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.