These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 34921997)

  • 1. CsAtf1, a bZIP transcription factor, is involved in fludioxonil sensitivity and virulence in the rubber tree anthracnose fungus Colletotrichum siamense.
    Song M; Fang S; Li Z; Wang N; Li X; Liu W; Zhang Y; Lin C; Miao W
    Fungal Genet Biol; 2022 Jan; 158():103649. PubMed ID: 34921997
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Transcription Factor CsAtf1 Negatively Regulates the Cytochrome P450 Gene
    Guan X; Song M; Lu J; Yang H; Li X; Liu W; Zhang Y; Miao W; Li Z; Lin C
    J Fungi (Basel); 2022 Sep; 8(10):. PubMed ID: 36294597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The CsPbs2-interacting protein oxalate decarboxylase CsOxdC3 modulates morphosporogenesis, virulence, and fungicide resistance in Colletotrichum siamense.
    Lu J; Liu Y; Song M; Xi Y; Yang H; Liu W; Li X; Norvienyeku J; Zhang Y; Miao W; Lin C
    Microbiol Res; 2024 Jul; 284():127732. PubMed ID: 38677265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CgHog1 controls the adaptation to both sorbitol and fludioxonil in Colletotrichum gloeosporioides.
    Li Y; He P; Tian C; Wang Y
    Fungal Genet Biol; 2020 Feb; 135():103289. PubMed ID: 31704368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Putative MAPK Kinase Kinase Gene
    Li T; Xiu Q; Wang J; Duan Y; Zhou M
    Phytopathology; 2021 Mar; 111(3):521-530. PubMed ID: 33044134
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fungicide activity through activation of a fungal signalling pathway.
    Kojima K; Takano Y; Yoshimi A; Tanaka C; Kikuchi T; Okuno T
    Mol Microbiol; 2004 Sep; 53(6):1785-96. PubMed ID: 15341655
    [TBL] [Abstract][Full Text] [Related]  

  • 7. bZIP transcription factor CgAP1 is essential for oxidative stress tolerance and full virulence of the poplar anthracnose fungus Colletotrichum gloeosporioides.
    Sun Y; Wang Y; Tian C
    Fungal Genet Biol; 2016 Oct; 95():58-66. PubMed ID: 27544415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional analysis of a regulator of G-protein signaling CgRGS1 in the rubber tree anthracnose fungus Colletotrichum gloeosporioides.
    Liu ZQ; Wu ML; Ke ZJ; Liu WB; Li XY
    Arch Microbiol; 2018 Apr; 200(3):391-400. PubMed ID: 29177869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The velvet proteins CsVosA and CsVelB coordinate growth, cell wall integrity, sporulation, conidial viability and pathogenicity in the rubber anthracnose fungus Colletotrichum siamense.
    Gao J; Zhou S; Tang W; Wang J; Liu H; Zhang Y; Wang L; Li X; Liu Z
    Microbiol Res; 2023 Mar; 268():127290. PubMed ID: 36571920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitivity of
    Usman HM; Tan Q; Fan F; Karim MM; Yin WX; Zhu FX; Luo CX
    Plant Dis; 2022 Jan; 106(1):165-173. PubMed ID: 34406787
    [No Abstract]   [Full Text] [Related]  

  • 11. Transcription factor CgAzf1 regulates melanin production, conidial development and infection in Colletotrichum gloeosporioides.
    Li X; Ke Z; Yu X; Liu Z; Zhang C
    Antonie Van Leeuwenhoek; 2019 Jul; 112(7):1095-1104. PubMed ID: 30725325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gcc1 homologs regulate growth, oxidative stress, conidiation and appressorium formation in Colletotrichum siamense and Colletotrichum graminicola.
    Wang D; Zhang Y; Zhou S; Zhang X; Liu S; Li X; Liu Z
    Microb Pathog; 2023 Sep; 182():106249. PubMed ID: 37437644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CgEnd3 Regulates Endocytosis, Appressorium Formation, and Virulence in the Poplar Anthracnose Fungus
    Wang X; Lu D; Tian C
    Int J Mol Sci; 2021 Apr; 22(8):. PubMed ID: 33919762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inherent tolerance of Colletotrichum gloeosporioides to fludioxonil.
    Schnabel G; Tan Q; Schneider V; Ishii H
    Pestic Biochem Physiol; 2021 Feb; 172():104767. PubMed ID: 33518054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitivity of
    Usman HM; Tan Q; Karim MM; Adnan M; Yin WX; Zhu FX; Luo CX
    Plant Dis; 2021 Nov; 105(11):3459-3465. PubMed ID: 34132595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative Detection and Monitoring of
    Du Y; Wang M; Zou L; Long M; Yang Y; Zhang Y; Liang X
    Plant Dis; 2021 Oct; 105(10):2861-2866. PubMed ID: 33900111
    [No Abstract]   [Full Text] [Related]  

  • 17. The fatty acid 2-hydroxylase CsSCS7 is a key hyphal growth factor and potential control target in
    Xi Y; Long X; Song M; Liu Y; Yan J; Lv Y; Yang H; Zhang Y; Miao W; Lin C
    mBio; 2024 Feb; 15(2):e0201523. PubMed ID: 38197633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High osmolarity glycerol (HOG) signalling in Magnaporthe oryzae: Identification of MoYPD1 and its role in osmoregulation, fungicide action, and pathogenicity.
    Jacob S; Foster AJ; Yemelin A; Thines E
    Fungal Biol; 2015 Jul; 119(7):580-94. PubMed ID: 26058534
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Liang C; Zhang B; Zhou Y; Yin H; An B; Lin D; He C; Luo H
    Front Microbiol; 2021; 12():629387. PubMed ID: 33763047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resistance risk assessment for fludioxonil in Bipolaris maydis.
    Han X; Zhao H; Ren W; Lv C; Chen C
    Pestic Biochem Physiol; 2017 Jun; 139():32-39. PubMed ID: 28595919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.