These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 34922068)
1. Fabrication of highly-conductive porous capacitor electrodes by the insertion of Cu-nanoparticles into N-doped flocculated carbon catalysts. Lv XW; Ji S; Wang ZH; Wang XY; Wang H; Wang RF J Colloid Interface Sci; 2022 Mar; 610():106-115. PubMed ID: 34922068 [TBL] [Abstract][Full Text] [Related]
2. Quick Lv X; Ji S; Lu J; Zhang L; Wang X; Wang H Dalton Trans; 2021 Mar; 50(10):3651-3659. PubMed ID: 33629082 [TBL] [Abstract][Full Text] [Related]
3. Excellent Compatibility of the Gravimetric and Areal Capacitances of an Electric-Double-Layer Capacitor Configured with S-Doped Activated Carbon. Ma X; Zhao L; Yu Z; Wang X; Song X; Ning G; Gao J ChemSusChem; 2018 Nov; 11(21):3766-3773. PubMed ID: 30152903 [TBL] [Abstract][Full Text] [Related]
4. Hierarchical porous carbon microspheres derived from porous starch for use in high-rate electrochemical double-layer capacitors. Du SH; Wang LQ; Fu XT; Chen MM; Wang CY Bioresour Technol; 2013 Jul; 139():406-9. PubMed ID: 23684820 [TBL] [Abstract][Full Text] [Related]
5. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Sheberla D; Bachman JC; Elias JS; Sun CJ; Shao-Horn Y; Dincă M Nat Mater; 2017 Feb; 16(2):220-224. PubMed ID: 27723738 [TBL] [Abstract][Full Text] [Related]
6. Boron-doped Nanodiamond as an Electrode Material for Aqueous Electric Double-layer Capacitors. Miyashita K; Kondo T; Sugai S; Tei T; Nishikawa M; Tojo T; Yuasa M Sci Rep; 2019 Nov; 9(1):17846. PubMed ID: 31780797 [TBL] [Abstract][Full Text] [Related]
8. Flexible Graphene/Carbon Nanotube Electrochemical Double-Layer Capacitors with Ultrahigh Areal Performance. Romano V; Martín-García B; Bellani S; Marasco L; Kumar Panda J; Oropesa-Nuñez R; Najafi L; Del Rio Castillo AE; Prato M; Mantero E; Pellegrini V; D'Angelo G; Bonaccorso F Chempluschem; 2019 Jul; 84(7):882-892. PubMed ID: 31943980 [TBL] [Abstract][Full Text] [Related]
9. Hierarchically Porous Carbon Networks Derived from Chitosan for High-Performance Electrochemical Double-Layer Capacitors. Park KH; Byun S; Ko B; Hong WG; Kim J; Lee D; Shim WG; Song SH Nanomaterials (Basel); 2023 Nov; 13(22):. PubMed ID: 37999315 [TBL] [Abstract][Full Text] [Related]
10. Preparation of Porous Carbon Nanofibers with Tailored Porosity for Electrochemical Capacitor Electrodes. Kim J; Heo YJ; Hong JY; Kim SK Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32033458 [TBL] [Abstract][Full Text] [Related]
11. High Density 3D Carbon Tube Nanoarray Electrode Boosting the Capacitance of Filter Capacitor. Chen G; Han F; Ma H; Li P; Zhou Z; Wang P; Li X; Meng G; Wei B Nanomicro Lett; 2024 Jul; 16(1):235. PubMed ID: 38958813 [TBL] [Abstract][Full Text] [Related]
12. Electrochemical Double-Layer Capacitor Energized by Adding an Ambipolar Organic Redox Radical into the Electrolyte. Hu L; Shi C; Guo K; Zhai T; Li H; Wang Y Angew Chem Int Ed Engl; 2018 Jul; 57(27):8214-8218. PubMed ID: 29797542 [TBL] [Abstract][Full Text] [Related]
13. Carbon materials for chemical capacitive energy storage. Zhai Y; Dou Y; Zhao D; Fulvio PF; Mayes RT; Dai S Adv Mater; 2011 Nov; 23(42):4828-50. PubMed ID: 21953940 [TBL] [Abstract][Full Text] [Related]
14. Flexible and Freestanding Supercapacitor Electrodes Based on Nitrogen-Doped Carbon Networks/Graphene/Bacterial Cellulose with Ultrahigh Areal Capacitance. Ma L; Liu R; Niu H; Xing L; Liu L; Huang Y ACS Appl Mater Interfaces; 2016 Dec; 8(49):33608-33618. PubMed ID: 27960422 [TBL] [Abstract][Full Text] [Related]
15. Cobalt-Containing Nanoporous Nitrogen-Doped Carbon Nanocuboids from Zeolite Imidazole Frameworks for Supercapacitors. Song Y; Zhang M; Liu T; Li T; Guo D; Liu XX Nanomaterials (Basel); 2019 Aug; 9(8):. PubMed ID: 31382437 [TBL] [Abstract][Full Text] [Related]
16. Significant enhancement of electron transfer from Shewanella oneidensis using a porous N-doped carbon cloth in a bioelectrochemical system. Yuan HR; Deng LF; Qian X; Wang LF; Li DN; Chen Y; Yuan Y Sci Total Environ; 2019 May; 665():882-889. PubMed ID: 30790761 [TBL] [Abstract][Full Text] [Related]
17. Simulation Study of Electric Double-Layer Capacitance of Ordered Carbon Electrodes. Nigam R; Kar KK Langmuir; 2022 Oct; 38(40):12235-12247. PubMed ID: 36164778 [TBL] [Abstract][Full Text] [Related]
18. A novel carbon electrode material for highly improved EDLC performance. Fang B; Binder L J Phys Chem B; 2006 Apr; 110(15):7877-82. PubMed ID: 16610885 [TBL] [Abstract][Full Text] [Related]
19. N, S, O Self-Doped Porous Carbon Nanoarchitectonics Derived from Pinecone with Outstanding Supercapacitance Performances. Zhang D; Xue Y; Chen J; Guo X; Yang D; Wang J; Zhang J; Zhang F; Yuan A J Nanosci Nanotechnol; 2020 May; 20(5):2728-2735. PubMed ID: 31635608 [TBL] [Abstract][Full Text] [Related]
20. Rational design of conductive metal-organic frameworks and aligned carbon nanofibers for enhancing the performance of flexible supercapacitors. Kim D; Yun TG; Lee JH; Yoon KR; Kim K Nanoscale Adv; 2024 Mar; 6(7):1900-1908. PubMed ID: 38545288 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]