These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 34922102)

  • 1. Module-scale analysis of low-salt-rejection reverse osmosis: Design guidelines and system performance.
    Du Y; Wang Z; Cooper NJ; Gilron J; Elimelech M
    Water Res; 2022 Feb; 209():117936. PubMed ID: 34922102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of Energy Consumption of Osmotically Assisted Reverse Osmosis and Low-Salt-Rejection Reverse Osmosis for Brine Management.
    Wang Z; Feng D; Chen Y; He D; Elimelech M
    Environ Sci Technol; 2021 Aug; 55(15):10714-10723. PubMed ID: 34269563
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Minimal and zero liquid discharge with reverse osmosis using low-salt-rejection membranes.
    Wang Z; Deshmukh A; Du Y; Elimelech M
    Water Res; 2020 Mar; 170():115317. PubMed ID: 31786394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a multistage hybrid desalination process for brine management and maximum water recovery.
    Kadi KE; Janajreh I; Abedrabbo S; Ali MI
    Environ Sci Pollut Res Int; 2024 Mar; 31(12):17565-17577. PubMed ID: 36640235
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decarbonized and circular brine management/valorization for water & valuable resource recovery via minimal/zero liquid discharge (MLD/ZLD) strategies.
    Panagopoulos A; Giannika V
    J Environ Manage; 2022 Dec; 324():116239. PubMed ID: 36174468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive assessment of the economic and technical viability of a zero liquid discharge (ZLD) hybrid desalination system for water and salt recovery.
    Panagopoulos A; Giannika V
    J Environ Manage; 2024 May; 359():121057. PubMed ID: 38718606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increasing net water recovery of reverse osmosis with membrane distillation using natural thermal differentials between brine and co-located water sources: Impacts at large reclamation facilities.
    Alrehaili O; Perreault F; Sinha S; Westerhoff P
    Water Res; 2020 Oct; 184():116134. PubMed ID: 32810769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanofiltration Process for Enhanced Treatment of RO Brine Discharge.
    Ali MEA
    Membranes (Basel); 2021 Mar; 11(3):. PubMed ID: 33803579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane fouling behaviors in a full-scale zero liquid discharge system for cold-rolling wastewater brine treatment: A comprehensive analysis on multiple membrane processes.
    Wang H; Dai R; Wang L; Wang X; Wang Z
    Water Res; 2022 Nov; 226():119221. PubMed ID: 36242936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zero Liquid Discharge of Ultrahigh-Salinity Brines with Temperature Swing Solvent Extraction.
    Boo C; Billinge IH; Chen X; Shah KM; Yip NY
    Environ Sci Technol; 2020 Jul; 54(14):9124-9131. PubMed ID: 32573209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-dimensional parametric study for enhancing Brackish Water Reverse Osmosis membrane performance suited for desalination of low salinity feeds.
    Thummar UG; Amaliar G; Sutariya B; Singh PS
    Water Environ Res; 2024 May; 96(5):e11028. PubMed ID: 38715392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unlocking High-Salinity Desalination with Cascading Osmotically Mediated Reverse Osmosis: Energy and Operating Pressure Analysis.
    Chen X; Yip NY
    Environ Sci Technol; 2018 Feb; 52(4):2242-2250. PubMed ID: 29357240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of Hypersaline Brine Desalination Using Spiral Wound Membrane: A Parametric Study.
    Foo K; Liang YY; Lau WJ; Khan MMR; Ahmad AL
    Membranes (Basel); 2023 Feb; 13(2):. PubMed ID: 36837751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards sustainable circular brine reclamation using seawater reverse osmosis, membrane distillation and forward osmosis hybrids: An experimental investigation.
    Son HS; Soukane S; Lee J; Kim Y; Kim YD; Ghaffour N
    J Environ Manage; 2021 Sep; 293():112836. PubMed ID: 34052611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of percrystallization coupled with electrodialysis for zero liquid discharge in the pulping industry.
    Moltedo JJ; Schwarz A; Gonzalez-Vogel A
    J Environ Manage; 2022 Feb; 303():114104. PubMed ID: 34823907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical and Experimental Analysis of Osmotically Assisted Reverse Osmosis for Minimum Liquid Discharge.
    Ju J; Lee S; Kim Y; Cho H; Lee S
    Membranes (Basel); 2023 Sep; 13(10):. PubMed ID: 37887986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vacuum membrane distillation of seawater reverse osmosis brines.
    Mericq JP; Laborie S; Cabassud C
    Water Res; 2010 Oct; 44(18):5260-73. PubMed ID: 20659753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel zero-liquid discharge desalination system based on the humidification-dehumidification process: A preliminary study.
    Chen Q; Akhtar FH; Burhan M; M K; Ng KC
    Water Res; 2021 Dec; 207():117794. PubMed ID: 34749104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A study on near zero liquid discharge approach for the treatment of reverse osmosis membrane concentrate by electrodialysis.
    Balcik-Canbolat C; Sengezer C; Sakar H; Karagunduz A; Keskinler B
    Environ Technol; 2020 Jan; 41(4):440-449. PubMed ID: 30010517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of membrane distillation as volume reduction technology for in-land desalination brines management: Pre-treatments and scaling limitations.
    Viader G; Casal O; Lefèvre B; de Arespacochaga N; Echevarría C; López J; Valderrama C; Cortina JL
    J Environ Manage; 2021 Jul; 289():112549. PubMed ID: 33872872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.