These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 34922195)

  • 21. Computing Average Passive Forces in Sarcomeres in Length-Ramp Simulations.
    Schappacher-Tilp G; Leonard T; Desch G; Herzog W
    PLoS Comput Biol; 2016 Jun; 12(6):e1004904. PubMed ID: 27276390
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A multi-scale continuum model of skeletal muscle mechanics predicting force enhancement based on actin-titin interaction.
    Heidlauf T; Klotz T; Rode C; Altan E; Bleiler C; Siebert T; Röhrle O
    Biomech Model Mechanobiol; 2016 Dec; 15(6):1423-1437. PubMed ID: 26935301
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calcium-dependent inhibition of in vitro thin-filament motility by native titin.
    Kellermayer MS; Granzier HL
    FEBS Lett; 1996 Feb; 380(3):281-6. PubMed ID: 8601441
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Titin as a force-generating muscle protein under regulatory control.
    Freundt JK; Linke WA
    J Appl Physiol (1985); 2019 May; 126(5):1474-1482. PubMed ID: 30521425
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Titin-based tension in the cardiac sarcomere: molecular origin and physiological adaptations.
    Anderson BR; Granzier HL
    Prog Biophys Mol Biol; 2012; 110(2-3):204-17. PubMed ID: 22910434
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multiple molecular interactions implicate the connectin/titin N2A region as a modulating scaffold for p94/calpain 3 activity in skeletal muscle.
    Hayashi C; Ono Y; Doi N; Kitamura F; Tagami M; Mineki R; Arai T; Taguchi H; Yanagida M; Hirner S; Labeit D; Labeit S; Sorimachi H
    J Biol Chem; 2008 May; 283(21):14801-14. PubMed ID: 18310072
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Structural Insights on the Obscurin-Binding Domains in Titin.
    Letourneau AG; Wright NT
    Protein Pept Lett; 2018; 25(11):973-979. PubMed ID: 30289063
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Actin removal from cardiac myocytes shows that near Z line titin attaches to actin while under tension.
    Trombitás K; Granzier H
    Am J Physiol; 1997 Aug; 273(2 Pt 1):C662-70. PubMed ID: 9277364
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gigantic variety: expression patterns of titin isoforms in striated muscles and consequences for myofibrillar passive stiffness.
    Neagoe C; Opitz CA; Makarenko I; Linke WA
    J Muscle Res Cell Motil; 2003; 24(2-3):175-89. PubMed ID: 14609029
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential changes in titin domain phosphorylation increase myofilament stiffness in failing human hearts.
    Kötter S; Gout L; Von Frieling-Salewsky M; Müller AE; Helling S; Marcus K; Dos Remedios C; Linke WA; Krüger M
    Cardiovasc Res; 2013 Sep; 99(4):648-56. PubMed ID: 23764881
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Human myocytes are protected from titin aggregation-induced stiffening by small heat shock proteins.
    Kötter S; Unger A; Hamdani N; Lang P; Vorgerd M; Nagel-Steger L; Linke WA
    J Cell Biol; 2014 Jan; 204(2):187-202. PubMed ID: 24421331
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Eccentric contraction: unraveling mechanisms of force enhancement and energy conservation.
    Nishikawa K
    J Exp Biol; 2016 Jan; 219(Pt 2):189-96. PubMed ID: 26792330
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Protein kinase-A phosphorylates titin in human heart muscle and reduces myofibrillar passive tension.
    Krüger M; Linke WA
    J Muscle Res Cell Motil; 2006; 27(5-7):435-44. PubMed ID: 16897574
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Probing muscle ankyrin-repeat protein (MARP) structure and function.
    Lun AS; Chen J; Lange S
    Anat Rec (Hoboken); 2014 Sep; 297(9):1615-29. PubMed ID: 25125175
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Titin: A Tunable Spring in Active Muscle.
    Nishikawa K
    Physiology (Bethesda); 2020 May; 35(3):209-217. PubMed ID: 32293234
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PEVK domain of titin: an entropic spring with actin-binding properties.
    Linke WA; Kulke M; Li H; Fujita-Becker S; Neagoe C; Manstein DJ; Gautel M; Fernandez JM
    J Struct Biol; 2002; 137(1-2):194-205. PubMed ID: 12064946
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differences in titin segmental elongation between passive and active stretch in skeletal muscle.
    DuVall MM; Jinha A; Schappacher-Tilp G; Leonard TR; Herzog W
    J Exp Biol; 2017 Dec; 220(Pt 23):4418-4425. PubMed ID: 28970245
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Filamin actin-binding and titin-binding fulfill distinct functions in Z-disc cohesion.
    González-Morales N; Holenka TK; Schöck F
    PLoS Genet; 2017 Jul; 13(7):e1006880. PubMed ID: 28732005
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Titin-thin filament interaction and potential role in muscle function.
    Jin JP
    Adv Exp Med Biol; 2000; 481():319-33; discussion 334-5. PubMed ID: 10987081
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of genetically expressed cardiac titin fragments on in vitro actin motility.
    Li Q; Jin JP; Granzier HL
    Biophys J; 1995 Oct; 69(4):1508-18. PubMed ID: 8534821
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.