These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 34922270)

  • 1. Zinc-nutrient element based alloys for absorbable wound closure devices fabrication: Current status, challenges, and future prospects.
    Yang N; Venezuela J; Almathami S; Dargusch M
    Biomaterials; 2022 Jan; 280():121301. PubMed ID: 34922270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Prospects for Biodegradable Zinc in Wound Closure Applications.
    Venezuela JJD; Johnston S; Dargusch MS
    Adv Healthc Mater; 2019 Aug; 8(16):e1900408. PubMed ID: 31267693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Current status and perspectives of zinc-based absorbable alloys for biomedical applications.
    Hernández-Escobar D; Champagne S; Yilmazer H; Dikici B; Boehlert CJ; Hermawan H
    Acta Biomater; 2019 Oct; 97():1-22. PubMed ID: 31351253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zinc-based subcuticular absorbable staples: An in vivo and in vitro study.
    Yang N; Venezuela J; Allavena R; Lau C; Dargusch M
    Acta Biomater; 2023 Sep; 167():593-607. PubMed ID: 37369266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Challenges in the use of zinc and its alloys as biodegradable metals: Perspective from biomechanical compatibility.
    Li G; Yang H; Zheng Y; Chen XH; Yang JA; Zhu D; Ruan L; Takashima K
    Acta Biomater; 2019 Oct; 97():23-45. PubMed ID: 31349057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: A comprehensive review.
    Venezuela J; Dargusch MS
    Acta Biomater; 2019 Mar; 87():1-40. PubMed ID: 30660777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances on the mechanical behavior of zinc based biodegradable metals focusing on the strain softening phenomenon.
    Huang H; Li G; Jia Q; Bian D; Guan S; Kulyasova O; Valiev RZ; Rau JV; Zheng Y
    Acta Biomater; 2022 Oct; 152():1-18. PubMed ID: 36028200
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunability of mechanical and biodegradation properties of zinc-based biomaterial with calcium Micronutrient alloying.
    Akinwekomi AD; Akhtar F
    J Mech Behav Biomed Mater; 2023 Apr; 140():105724. PubMed ID: 36841123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications.
    Yang H; Jia B; Zhang Z; Qu X; Li G; Lin W; Zhu D; Dai K; Zheng Y
    Nat Commun; 2020 Jan; 11(1):401. PubMed ID: 31964879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr.
    Li HF; Xie XH; Zheng YF; Cong Y; Zhou FY; Qiu KJ; Wang X; Chen SH; Huang L; Tian L; Qin L
    Sci Rep; 2015 May; 5():10719. PubMed ID: 26023878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A study of degradation behaviour and biocompatibility of Zn-Fe alloy prepared by electrodeposition.
    He J; Li DW; He FL; Liu YY; Liu YL; Zhang CY; Ren F; Ye YJ; Deng XD; Yin DC
    Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111295. PubMed ID: 32919656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradable ternary Zn-3Ge-0.5X (X=Cu, Mg, and Fe) alloys for orthopedic applications.
    Lin J; Tong X; Sun Q; Luan Y; Zhang D; Shi Z; Wang K; Lin J; Li Y; Dargusch M; Wen C
    Acta Biomater; 2020 Oct; 115():432-446. PubMed ID: 32853807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances on biodegradable zinc-silver-based alloys for biomedical applications.
    Xiao X; Liu E; Shao J; Ge S
    J Appl Biomater Funct Mater; 2021; 19():22808000211062407. PubMed ID: 34903075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradable magnesium-based alloys for biomedical applications: The role of critical alloying elements.
    Chen Y; Dou J; Yu H; Chen C
    J Biomater Appl; 2019 May; 33(10):1348-1372. PubMed ID: 30854910
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bio-inspired biomaterial Mg-Zn-Ca: a review of the main mechanical and biological properties of Mg-based alloys.
    Campos Becerra LH; Hernández Rodríguez MAL; Esquivel Solís H; Lesso Arroyo R; Torres Castro A
    Biomed Phys Eng Express; 2020 Jun; 6(4):042001. PubMed ID: 33444260
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Zn-based alloys for biodegradable stent applications: Design, development and in vitro degradation.
    Mostaed E; Sikora-Jasinska M; Mostaed A; Loffredo S; Demir AG; Previtali B; Mantovani D; Beanland R; Vedani M
    J Mech Behav Biomed Mater; 2016 Jul; 60():581-602. PubMed ID: 27062241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of strain on degradation behaviors of WE43, Fe and Zn wires.
    Chen K; Lu Y; Tang H; Gao Y; Zhao F; Gu X; Fan Y
    Acta Biomater; 2020 Sep; 113():627-645. PubMed ID: 32574860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prospects and strategies for magnesium alloys as biodegradable implants from crystalline to bulk metallic glasses and composites-A review.
    Kiani F; Wen C; Li Y
    Acta Biomater; 2020 Feb; 103():1-23. PubMed ID: 31881312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of biodegradable Zn-1%Mg and Zn-1%Mg-0.5%Ca alloys for biomedical applications.
    Katarivas Levy G; Leon A; Kafri A; Ventura Y; Drelich JW; Goldman J; Vago R; Aghion E
    J Mater Sci Mater Med; 2017 Sep; 28(11):174. PubMed ID: 28956207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biodegradable magnesium alloys for orthopaedic applications: A review on corrosion, biocompatibility and surface modifications.
    Agarwal S; Curtin J; Duffy B; Jaiswal S
    Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():948-963. PubMed ID: 27524097
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.