These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 34922275)

  • 1. Cleavage sites and non-enzymatic self-degradation mechanism of ready-to-eat sea cucumber during storage.
    Sun X; Zhu L; Qi X; Zhang H; Wu L; Wang J; Hou H
    Food Chem; 2022 May; 375():131722. PubMed ID: 34922275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel synergistic cross-linking ameliorate ready-to-eat sea cucumber deterioration and its quantum chemical analysis.
    Li Y; Qi X; Fan C; Fan Y; Zhang H; Zhang J; Hou H
    Food Chem; 2024 May; 439():138097. PubMed ID: 38061304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanism of molecular cross-linking against nonenzymatic degradation in the body wall of ready-to-eat sea cucumber.
    Zhu L; Qi X; Bai J; Sun X; Hou H
    Food Chem; 2022 Mar; 373(Pt B):131359. PubMed ID: 34731795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intervention mechanism of self-degradation of ready-to-eat sea cucumber by adding green tea extract and gallic acid.
    Qi X; Sun X; Zhu L; Zhang H; Wang Y; Liu Y; Hou H
    Food Res Int; 2022 Jun; 156():111282. PubMed ID: 35651054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of secondary bonds to the storage stability of ready-to-eat sea cucumber.
    Tian Q; Lin L; Qi X; Zhu L; Hao L; Wu L; Wang J; Hou H
    Food Chem; 2022 Sep; 389():133061. PubMed ID: 35526283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of gallic acid and chlorogenic acid on physicochemical, microstructural and thermal degradation properties of ready-to-eat sea cucumber.
    Zhu L; Sun X; Fan Y; Wang Y; Qi X; Hou H
    Food Chem; 2022 Jun; 380():132186. PubMed ID: 35093663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidized inositol stabilizes rehydrated sea cucumbers against non-enzymatic deterioration.
    Cao H; Liu D; Zhi L; Liu J; Liu Y; Xu H; Wang D; Xu Y; Xue C; Sun X
    Food Chem; 2023 Mar; 405(Pt B):134973. PubMed ID: 36435117
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of multiple freeze-thaw cycles on the quality of instant sea cucumber: Emphatically on water status of by LF-NMR and MRI.
    Tan M; Lin Z; Zu Y; Zhu B; Cheng S
    Food Res Int; 2018 Jul; 109():65-71. PubMed ID: 29803493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of proteolysis and oxidation on mechanical properties of sea cucumber (Stichopus japonicus) during thermal processing and storage and their control.
    Liu ZQ; Li DY; Song L; Liu YX; Yu MM; Zhang M; Rakariyatham K; Zhou DY; Shahidi F
    Food Chem; 2020 Nov; 330():127248. PubMed ID: 32531638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Storage Method on the Quality of Processed Sea Cucumbers (
    Li S; Zhou Y; Sun L; Wang Y; Song S; Ai C; Yang J
    Foods; 2022 Dec; 11(24):. PubMed ID: 36553840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Heat-Induced Water Adsorption of Sea Cucumber Body Wall.
    Dong X; Liu W; Song X; Lin X; Yu D; Yu C; Zhu B
    J Food Sci; 2019 Jan; 84(1):92-100. PubMed ID: 30592534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of structural proteins in sea cucumber (Apostichopus japonicus) body wall.
    Wang Y; Tian M; Chang Y; Xue C; Li Z
    Sci Rep; 2020 Oct; 10(1):18744. PubMed ID: 33127976
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of texture properties and water-soluble fraction proteome of sea cucumber body wall with different boiling heating treatment.
    Zhang M; Liu YX; Wu ZX; Zhao GH; Song L; Jiang PF; Yu MM; Zhou DY
    Food Chem; 2023 May; 409():135333. PubMed ID: 36592605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and characterization of a sea cucumber fucoidan-utilizing marine bacterium.
    Chang Y; Xue C; Tang Q; Li D; Wu X; Wang J
    Lett Appl Microbiol; 2010 Mar; 50(3):301-7. PubMed ID: 20070508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An analysis combining proteomics and transcriptomics revealed a regulation target of sea cucumber autolysis.
    Yan T; Sun J; Zheng J; Yang J
    Comp Biochem Physiol Part D Genomics Proteomics; 2024 Jun; 52():101274. PubMed ID: 38906042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of heat treatment on the gel properties of the body wall of sea cucumber (
    Zhang K; Hou H; Bu L; Li B; Xue C; Peng Z; Su S
    J Food Sci Technol; 2017 Mar; 54(3):707-717. PubMed ID: 28298684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative phosphoproteomic analysis of intestinal phosphorylated proteins in active versus aestivating sea cucumbers.
    Chen M; Zhu A; Storey KB
    J Proteomics; 2016 Mar; 135():141-150. PubMed ID: 26385000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of total and organic vanadium levels and their bioaccumulation in edible sea cucumbers: tissues distribution, inter-species-specific, locational differences and seasonal variations.
    Liu Y; Zhou Q; Xu J; Xue Y; Liu X; Wang J; Xue C
    Environ Geochem Health; 2016 Feb; 38(1):111-22. PubMed ID: 25732906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of geographic variation on the proteome of sea cucumber (Stichopus japonicus).
    Feng J; Zhang L; Xia X; Hu W; Zhou P
    Food Res Int; 2020 Oct; 136():109498. PubMed ID: 32846579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of endogenous cysteine proteinases on structures of collagen fibres from dermis of sea cucumber (Stichopus japonicus).
    Liu YX; Zhou DY; Ma DD; Liu ZQ; Liu YF; Song L; Dong XP; Li DM; Zhu BW; Konno K; Shahidi F
    Food Chem; 2017 Oct; 232():10-18. PubMed ID: 28490052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.