These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 34923274)

  • 1. Conformationally tunable calix[4]pyrrole-based nanofilms for efficient molecular separation.
    Liu X; Tang J; Yang J; Zhang H; Fang Y
    J Colloid Interface Sci; 2022 Mar; 610():368-375. PubMed ID: 34923274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust and Large-Area Calix[4]pyrrole-Based Nanofilms Enabled by Air/DMSO Interfacial Self-Assembly-Confined Synthesis.
    Yang J; Liu X; Tang J; Dėdinaitė A; Liu J; Miao R; Liu K; Peng J; Claesson PM; Liu X; Fang Y
    ACS Appl Mater Interfaces; 2021 Jan; 13(2):3336-3348. PubMed ID: 33356087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient Removal of Iodine from Water by a Calix[4]pyrrole-Based Nanofilm.
    Wang T; Liu X; Yang J; Tang J; Zhai B; Luo Y; Liu Z; Fang Y
    Langmuir; 2024 Feb; 40(8):4489-4495. PubMed ID: 38369881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large Area Self-Assembled Ultrathin Polyimine Nanofilms Formed at the Liquid-Liquid Interface Used for Molecular Separation.
    Tiwari K; Sarkar P; Modak S; Singh H; Pramanik SK; Karan S; Das A
    Adv Mater; 2020 Feb; 32(8):e1905621. PubMed ID: 31951297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enabling Covalent Organic Framework Nanofilms for Molecular Separation: Perforated Polymer-Assisted Transfer.
    Xiao A; Zhang Z; Shi X; Wang Y
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44783-44791. PubMed ID: 31689069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrathin Polyamide Nanofilms with Controlled Microporosity for Enhanced Solvent Permeation.
    Guo H; Li F; Shui X; Wang J; Fang C; Zhu L
    ACS Appl Mater Interfaces; 2023 Aug; 15(30):37077-37085. PubMed ID: 37479673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailor-made β-ketoenamine-linked covalent organic polymer nanofilms for precise molecular sieving.
    Guo H; Fang C; Li F; Cui W; Xiong R; Yang X; Zhu L
    Mater Horiz; 2023 Oct; 10(11):5133-5142. PubMed ID: 37697817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible Aliphatic-Aromatic Polyamide Thin Film Composite Membrane for Highly Efficient Organic Solvent Nanofiltration.
    Li Y; Zhu J; Li S; Guo Z; Van der Bruggen B
    ACS Appl Mater Interfaces; 2020 Jul; 12(28):31962-31974. PubMed ID: 32559377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2,2'-Biphenol-based Ultrathin Microporous Nanofilms for Highly Efficient Molecular Sieving Separation.
    Li SL; Chang G; Huang Y; Kinooka K; Chen Y; Fu W; Gong G; Yoshioka T; McKeown NB; Hu Y
    Angew Chem Int Ed Engl; 2022 Nov; 61(46):e202212816. PubMed ID: 36148532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water Transport through Ultrathin Polyamide Nanofilms Used for Reverse Osmosis.
    Jiang Z; Karan S; Livingston AG
    Adv Mater; 2018 Apr; 30(15):e1705973. PubMed ID: 29484724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interfacial synthesis of large-area ultrathin polyimine nanofilms as molecular separation membrane.
    Tiwari K; Modak S; Sarkar P; Ray S; Adupa V; Reddy KA; Pramanik SK; Das A; Karan S
    iScience; 2022 Apr; 25(4):104027. PubMed ID: 35313692
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable Molecular Sieving by Hierarchically Assembled Porous Organic Cage Membranes with Solvent-Responsive Switchable Pores.
    Ghaffar A; Hassan M; Penkov OV; Yavuz CT; Celebi K
    Environ Sci Technol; 2023 Dec; 57(48):20380-20391. PubMed ID: 37965815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unraveling Anomalies in Preferential Liquid Transport through the Intrinsic Pores of Cyclodextrin in Polyester Nanofilms.
    Puhan MR; Sarkar P; R A; Nagendraprasad G; Reddy KA; Sutariya B; Karan S
    Adv Mater; 2024 Sep; 36(36):e2404164. PubMed ID: 39091057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A smart and responsive crystalline porous organic cage membrane with switchable pore apertures for graded molecular sieving.
    He A; Jiang Z; Wu Y; Hussain H; Rawle J; Briggs ME; Little MA; Livingston AG; Cooper AI
    Nat Mater; 2022 Apr; 21(4):463-470. PubMed ID: 35013552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lysozyme Membranes Promoted by Hydrophobic Substrates for Ultrafast and Precise Organic Solvent Nanofiltration.
    Wu MB; Yang F; Yang J; Zhong Q; Körstgen V; Yang P; Müller-Buschbaum P; Xu ZK
    Nano Lett; 2020 Dec; 20(12):8760-8767. PubMed ID: 33211495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultraselective Macrocycle Membranes for Pharmaceutical Ingredients Separation in Organic Solvents.
    Alhazmi B; Ignacz G; Di Vincenzo M; Hedhili MN; Szekely G; Nunes SP
    Nat Commun; 2024 Aug; 15(1):7151. PubMed ID: 39169043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenanthroline-Based Polyarylate Porous Membranes with Rapid Water Transport for Metal Cation Separation.
    Ren D; Jin YT; Liu TY; Wang X
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7605-7616. PubMed ID: 31968159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charged Boron Nitride Nanosheet Membranes for Improved Organic Solvent Nanofiltration.
    Xu M; Tang Q; Liu Y; Shi J; Zhang W; Guo C; Liu Q; Lei W; Chen C
    ACS Appl Mater Interfaces; 2023 Mar; 15(9):12524-12533. PubMed ID: 36820819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alginate Hydrogel Assisted Controllable Interfacial Polymerization for High-Performance Nanofiltration Membranes.
    Ma ZY; Xue YR; Xu ZK
    Membranes (Basel); 2021 Jun; 11(6):. PubMed ID: 34200579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sub-10 nm Polyamide Nanofiltration Membrane for Molecular Separation.
    Hou J; Jiang M; He X; Liu P; Long C; Yu L; Huang Z; Huang J; Li L; Tang Z
    Chem Asian J; 2020 Aug; 15(15):2341-2345. PubMed ID: 31814322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.