BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 34923291)

  • 21. Ground-based simulations of cosmic ray heavy ion interactions in spacecraft and planetary habitat shielding materials.
    Miller J; Zeitlin C; Heilbronn L; Borak T; Carter T; Frankel KA; Fukumura A; Murakami T; Rademacher SE; Schimmerling W; Stronach C
    Acta Astronaut; 1998; 42(1-8):389-94. PubMed ID: 11541622
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Theoretical Investigation of Gamma- and Neutron-Shielding Properties of Polysulfone (PSU) Polymer Material Using Geant4.
    Akhdar H
    Polymers (Basel); 2022 Aug; 14(16):. PubMed ID: 36015631
    [TBL] [Abstract][Full Text] [Related]  

  • 23. GEANT4 simulation of cyclotron radioisotope production in a solid target.
    Poignant F; Penfold S; Asp J; Takhar P; Jackson P
    Phys Med; 2016 May; 32(5):728-34. PubMed ID: 27155937
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modulation of the DNA-damage response to HZE particles by shielding.
    Mukherjee B; Camacho CV; Tomimatsu N; Miller J; Burma S
    DNA Repair (Amst); 2008 Oct; 7(10):1717-30. PubMed ID: 18672098
    [TBL] [Abstract][Full Text] [Related]  

  • 25. SU-E-T-302: A Simulation Study with Geant4 Investigating the Secondary Prompt Gamma Emissions from Incident 40 MeV Protons Onto Various Materials.
    Lau A; Chen Y; Ahmad S
    Med Phys; 2012 Jun; 39(6Part14):3773. PubMed ID: 28517290
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electron mass scattering powers: Monte Carlo and analytical calculations.
    Li XA; Rogers DW
    Med Phys; 1995 May; 22(5):531-41. PubMed ID: 7643788
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CeBr
    Dal Bello R; Magalhaes Martins P; Seco J
    Med Phys; 2018 Apr; 45(4):1622-1630. PubMed ID: 29411400
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Validation of GEANT4, an object-oriented Monte Carlo toolkit, for simulations in medical physics.
    Carrier JF; Archambault L; Beaulieu L; Roy R
    Med Phys; 2004 Mar; 31(3):484-92. PubMed ID: 15070244
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A trichrome beam model for biological dose calculation in scanned carbon-ion radiotherapy treatment planning.
    Inaniwa T; Kanematsu N
    Phys Med Biol; 2015 Jan; 60(1):437-51. PubMed ID: 25658007
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Secondary particle production in tissue-like and shielding materials for light and heavy ions calculated with the Monte-Carlo code SHIELD-HIT.
    Gudowska I; Andreo P; Sobolevsky N
    J Radiat Res; 2002 Dec; 43 Suppl():S93-7. PubMed ID: 12793738
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison between MCNP5, Geant4 and experimental data for gamma rays attenuation of PbO-BaO-B
    Almatari M; Issa SAM; Dong MG; Sayyed MI; Ayad R
    Heliyon; 2019 Aug; 5(8):e02364. PubMed ID: 31485541
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Neutron production in tissue-like media and shielding materials irradiated with high-energy ion beams.
    Gudowska I; Kopec M; Sobolevsky N
    Radiat Prot Dosimetry; 2007; 126(1-4):652-6. PubMed ID: 17504751
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Radiation shielding materials and radiation scatter effects for interventional radiology (IR) physicians.
    McCaffrey JP; Tessier F; Shen H
    Med Phys; 2012 Jul; 39(7):4537-46. PubMed ID: 22830785
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation on Geant4 Hadronic Models for Pion Minus, Pion Plus and Neutron Particles as Major Antiproton Annihilation Products.
    Tavakoli MB; Mohammadi MM; Reiazi R; Jabbari K
    J Med Signals Sens; 2015; 5(2):105-9. PubMed ID: 26120569
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determination of surface dose in pencil beam scanning proton therapy.
    Kern A; Bäumer C; Kröninger K; Mertens L; Timmermann B; Walbersloh J; Wulff J
    Med Phys; 2020 Jun; 47(5):2277-2288. PubMed ID: 32037577
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Minibeam radiation therapy: A micro- and nano-dosimetry Monte Carlo study.
    Dos Santos M; Delorme R; Salmon R; Prezado Y
    Med Phys; 2020 Mar; 47(3):1379-1390. PubMed ID: 31900944
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electron fluence correction factors for various materials in clinical electron beams.
    Olivares M; DeBlois F; Podgorsak EB; Seuntjens JP
    Med Phys; 2001 Aug; 28(8):1727-34. PubMed ID: 11548943
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Solid water as phantom material for dosimetry of electron backscatter using low-energy electron beams: a Monte Carlo evaluation.
    Chow JC; Owrangi AM
    Med Phys; 2009 May; 36(5):1587-94. PubMed ID: 19544774
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Abstract ID: 241 Geant4 simulation studies of secondary particles emission in hadrontherapy treatments.
    Tamborini A; Rimoldi A; Ciocca M; Mirandola A; Scaffino G
    Phys Med; 2018 Jan; 45 Suppl 1():S4-S5. PubMed ID: 29413855
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dosimetric dependence of the dimensional characteristics on a lead shield in electron radiotherapy: a Monte Carlo study.
    Chow JCL; Grigorov GN
    J Appl Clin Med Phys; 2009 Apr; 10(2):75-91. PubMed ID: 19458593
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.