BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 34923566)

  • 1. Tissue-Engineered Skin Regenerative Units for Epidermal Keratinocytes Expansion and Wound Healing.
    Zhang X; Xu W; Hu X
    Med Sci Monit; 2021 Dec; 27():e932978. PubMed ID: 34923566
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micropatterned dermal-epidermal regeneration matrices create functional niches that enhance epidermal morphogenesis.
    Clement AL; Moutinho TJ; Pins GD
    Acta Biomater; 2013 Dec; 9(12):9474-84. PubMed ID: 23958778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The expression pattern of keratin 24 in tissue-engineered dermo-epidermal human skin substitutes in an in vivo model.
    Klar AS; Michalak K; Böttcher-Haberzeth S; Reichmann E; Meuli M; Biedermann T
    Pediatr Surg Int; 2018 Feb; 34(2):237-244. PubMed ID: 29039047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wound-healing factors secreted by epidermal keratinocytes and dermal fibroblasts in skin substitutes.
    Spiekstra SW; Breetveld M; Rustemeyer T; Scheper RJ; Gibbs S
    Wound Repair Regen; 2007; 15(5):708-17. PubMed ID: 17971017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Superficial dermal fibroblasts enhance basement membrane and epidermal barrier formation in tissue-engineered skin: implications for treatment of skin basement membrane disorders.
    Varkey M; Ding J; Tredget EE
    Tissue Eng Part A; 2014 Feb; 20(3-4):540-52. PubMed ID: 24004160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Full-thickness skin wound healing using autologous keratinocytes and dermal fibroblasts with fibrin: bilayered versus single-layered substitute.
    Idrus RB; Rameli MA; Low KC; Law JX; Chua KH; Latiff MB; Saim AB
    Adv Skin Wound Care; 2014 Apr; 27(4):171-80. PubMed ID: 24637651
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skin regeneration using keratinocytes and dermal fibroblasts cultured on biodegradable microspherical polymer scaffolds.
    Kim SS; Gwak SJ; Choi CY; Kim BS
    J Biomed Mater Res B Appl Biomater; 2005 Nov; 75(2):369-77. PubMed ID: 16025446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myelinated and unmyelinated nerve fibers reinnervate tissue-engineered dermo-epidermal human skin analogs in an in vivo model.
    Biedermann T; Klar AS; Böttcher-Haberzeth S; Reichmann E; Meuli M
    Pediatr Surg Int; 2016 Dec; 32(12):1183-1191. PubMed ID: 27651370
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wound contraction is significantly reduced by the use of microcarriers to deliver keratinocytes and fibroblasts in an in vivo pig model of wound repair and regeneration.
    Eldardiri M; Martin Y; Roxburgh J; Lawrence-Watt DJ; Sharpe JR
    Tissue Eng Part A; 2012 Mar; 18(5-6):587-97. PubMed ID: 21939396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chimeric composite skin substitutes for delivery of autologous keratinocytes to promote tissue regeneration.
    Rasmussen CA; Gibson AL; Schlosser SJ; Schurr MJ; Allen-Hoffmann BL
    Ann Surg; 2010 Feb; 251(2):368-76. PubMed ID: 20010085
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue Engineered Skin and Wound Healing: Current Strategies and Future Directions.
    Bhardwaj N; Chouhan D; Mandal BB
    Curr Pharm Des; 2017; 23(24):3455-3482. PubMed ID: 28552069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An in vivo model of wound healing in genetically modified skin-humanized mice.
    Escámez MJ; García M; Larcher F; Meana A; Muñoz E; Jorcano JL; Del Río M
    J Invest Dermatol; 2004 Dec; 123(6):1182-91. PubMed ID: 15610532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transplantation of acellular dermis and keratinocytes cultured on porous biodegradable microcarriers into full-thickness skin injuries on athymic rats.
    Seland H; Gustafson CJ; Johnson H; Junker JP; Kratz G
    Burns; 2011 Feb; 37(1):99-108. PubMed ID: 20630659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue Engineered Skin Substitutes.
    Goodarzi P; Falahzadeh K; Nematizadeh M; Farazandeh P; Payab M; Larijani B; Tayanloo Beik A; Arjmand B
    Adv Exp Med Biol; 2018; 1107():143-188. PubMed ID: 29855826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rapid creation of skin substitutes from human skin cells and biomimetic nanofibers for acute full-thickness wound repair.
    Mahjour SB; Fu X; Yang X; Fong J; Sefat F; Wang H
    Burns; 2015 Dec; 41(8):1764-1774. PubMed ID: 26187057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Platelet-rich plasma with keratinocytes and fibroblasts enhance healing of full-thickness wounds.
    Law JX; Chowdhury SR; Saim AB; Idrus RBH
    J Tissue Viability; 2017 Aug; 26(3):208-215. PubMed ID: 28615133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioprinted Skin Recapitulates Normal Collagen Remodeling in Full-Thickness Wounds.
    Jorgensen AM; Varkey M; Gorkun A; Clouse C; Xu L; Chou Z; Murphy SV; Molnar J; Lee SJ; Yoo JJ; Soker S; Atala A
    Tissue Eng Part A; 2020 May; 26(9-10):512-526. PubMed ID: 31861970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transplantation of autologous cells and porous gelatin microcarriers to promote wound healing.
    Larsson AP; Briheim K; Hanna V; Gustafsson K; Starkenberg A; Vintertun HN; Kratz G; Junker JPE
    Burns; 2021 May; 47(3):601-610. PubMed ID: 32843238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of wound healing efficiency mediated by artificial dermis functionalized with EGF or NRG1.
    Yoon D; Yoon D; Cha HJ; Lee JS; Chun W
    Biomed Mater; 2018 Apr; 13(4):045007. PubMed ID: 29386409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel strategy to engineer pre-vascularized 3-dimensional skin substitutes to achieve efficient, functional engraftment.
    Miyazaki H; Tsunoi Y; Akagi T; Sato S; Akashi M; Saitoh D
    Sci Rep; 2019 May; 9(1):7797. PubMed ID: 31127144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.