These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 34923778)

  • 1. Bioinspired Thermal Runaway Retardant Capsules for Improved Safety and Electrochemical Performance in Lithium-Ion Batteries.
    Gao Z; Rao S; Zhang T; Gao F; Xiao Y; Shali L; Wang X; Zheng Y; Chen Y; Zong Y; Li W; Chen Y
    Adv Sci (Weinh); 2022 Feb; 9(5):e2103796. PubMed ID: 34923778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal-Responsive and Fire-Resistant Materials for High-Safety Lithium-Ion Batteries.
    Li H; Wang H; Xu Z; Wang K; Ge M; Gan L; Zhang Y; Tang Y; Chen S
    Small; 2021 Oct; 17(43):e2103679. PubMed ID: 34580989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bio-Inspired Electrodes with Rational Spatiotemporal Management for Lithium-Ion Batteries.
    Song Z; Li W; Gao Z; Chen Y; Wang D; Chen S
    Adv Sci (Weinh); 2024 Jul; 11(28):e2400405. PubMed ID: 38682479
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Amines in Thermal-Runaway-Mitigating Lithium-Ion Battery.
    Shi Y; Noelle DJ; Wang M; Le AV; Yoon H; Zhang M; Meng YS; Qiao Y
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):30956-30963. PubMed ID: 27786445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries.
    Liu K; Liu W; Qiu Y; Kong B; Sun Y; Chen Z; Zhuo D; Lin D; Cui Y
    Sci Adv; 2017 Jan; 3(1):e1601978. PubMed ID: 28097221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Safety Lithium-Ion Batteries with Silicon-Based Anodes Enabled by Electrolyte Design.
    Hu K; Sang X; Chen J; Liu Z; Zhang J; Hu X
    Chem Asian J; 2023 Dec; 18(24):e202300820. PubMed ID: 37953663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal runaway of Lithium-ion batteries employing LiN(SO
    Hou J; Lu L; Wang L; Ohma A; Ren D; Feng X; Li Y; Li Y; Ootani I; Han X; Ren W; He X; Nitta Y; Ouyang M
    Nat Commun; 2020 Oct; 11(1):5100. PubMed ID: 33037217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The fire risk of portable batteries in their end-of-life: Investigation of the state of charge of waste lithium-ion batteries in Austria.
    Nigl T; Bäck T; Stuhlpfarrer S; Pomberger R
    Waste Manag Res; 2021 Sep; 39(9):1193-1199. PubMed ID: 33843368
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Challenging the concept of electrochemical discharge using salt solutions for lithium-ion batteries recycling.
    Ojanen S; Lundström M; Santasalo-Aarnio A; Serna-Guerrero R
    Waste Manag; 2018 Jun; 76():242-249. PubMed ID: 29615279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental Study on Thermal-Induced Runaway in High Nickel Ternary Batteries.
    Jia L; Wang D; Yin T; Li X; Li L; Dai Z; Zheng L
    ACS Omega; 2022 May; 7(17):14562-14570. PubMed ID: 35557703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Emerging applications of atomic layer deposition for lithium-ion battery studies.
    Meng X; Yang XQ; Sun X
    Adv Mater; 2012 Jul; 24(27):3589-615. PubMed ID: 22700328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on the electrical-thermal properties of lithium-ion battery materials in the NCM622/graphite system.
    Li H; Wu X; Fang S; Liu M; Bi S; Zhao T; Zhang X
    Front Chem; 2024; 12():1403696. PubMed ID: 38680457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal runaway and fire behaviors of large-scale lithium ion batteries with different heating methods.
    Wang Z; Yang H; Li Y; Wang G; Wang J
    J Hazard Mater; 2019 Nov; 379():120730. PubMed ID: 31252342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal Runaway Triggered by Plated Lithium on the Anode after Fast Charging.
    Li Y; Feng X; Ren D; Ouyang M; Lu L; Han X
    ACS Appl Mater Interfaces; 2019 Dec; 11(50):46839-46850. PubMed ID: 31742989
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Situ Gas Analysis and Fire Characterization of Lithium-Ion Cells During Thermal Runaway Using an Environmental Chamber.
    Kwon B; Cui W; Sharma A; Liao YT; Takahashi F; Juarez-Robles D; Parhizi M; Jeevarajan J
    J Vis Exp; 2023 Mar; (193):. PubMed ID: 37067273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Review on Lithium-Ion Battery Separators towards Enhanced Safety Performances and Modelling Approaches.
    Li A; Yuen ACY; Wang W; De Cachinho Cordeiro IM; Wang C; Chen TBY; Zhang J; Chan QN; Yeoh GH
    Molecules; 2021 Jan; 26(2):. PubMed ID: 33477513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Extinguishing Lithium Ion Batteries Based on Internally Embedded Fire-Extinguishing Microcapsules with Temperature-Responsiveness.
    Yim T; Park MS; Woo SG; Kwon HK; Yoo JK; Jung YS; Kim KJ; Yu JS; Kim YJ
    Nano Lett; 2015 Aug; 15(8):5059-67. PubMed ID: 26177284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Role of Sub- and Supercritical CO2 as "Processing Solvent" for the Recycling and Sample Preparation of Lithium Ion Battery Electrolytes.
    Nowak S; Winter M
    Molecules; 2017 Mar; 22(3):. PubMed ID: 28272327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experimental Study on Thermal Runaway Process of 18650 Lithium-Ion Battery under Different Discharge Currents.
    Li L; Ju X; Zhou X; Peng Y; Zhou Z; Cao B; Yang L
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental Study of Thermal Runaway Process of 18650 Lithium-Ion Battery.
    Liu J; Wang Z; Gong J; Liu K; Wang H; Guo L
    Materials (Basel); 2017 Feb; 10(3):. PubMed ID: 28772588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.