These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 34923836)
1. Cold atoms meet lattice gauge theory. Aidelsburger M; Barbiero L; Bermudez A; Chanda T; Dauphin A; González-Cuadra D; Grzybowski PR; Hands S; Jendrzejewski F; Jünemann J; Juzeliūnas G; Kasper V; Piga A; Ran SJ; Rizzi M; Sierra G; Tagliacozzo L; Tirrito E; Zache TV; Zakrzewski J; Zohar E; Lewenstein M Philos Trans A Math Phys Eng Sci; 2022 Feb; 380(2216):20210064. PubMed ID: 34923836 [TBL] [Abstract][Full Text] [Related]
2. Quantum simulation of lattice gauge theories in more than one space dimension-requirements, challenges and methods. Zohar E Philos Trans A Math Phys Eng Sci; 2022 Feb; 380(2216):20210069. PubMed ID: 34923840 [TBL] [Abstract][Full Text] [Related]
3. Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices. Zohar E; Cirac JI; Reznik B Rep Prog Phys; 2016 Jan; 79(1):014401. PubMed ID: 26684222 [TBL] [Abstract][Full Text] [Related]
4. Thermalization dynamics of a gauge theory on a quantum simulator. Zhou ZY; Su GX; Halimeh JC; Ott R; Sun H; Hauke P; Yang B; Yuan ZS; Berges J; Pan JW Science; 2022 Jul; 377(6603):311-314. PubMed ID: 35857589 [TBL] [Abstract][Full Text] [Related]
6. Atomic quantum simulation of dynamical gauge fields coupled to fermionic matter: from string breaking to evolution after a quench. Banerjee D; Dalmonte M; Müller M; Rico E; Stebler P; Wiese UJ; Zoller P Phys Rev Lett; 2012 Oct; 109(17):175302. PubMed ID: 23215198 [TBL] [Abstract][Full Text] [Related]
7. From quantum link models to D-theory: a resource efficient framework for the quantum simulation and computation of gauge theories. Wiese UJ Philos Trans A Math Phys Eng Sci; 2022 Feb; 380(2216):20210068. PubMed ID: 34923839 [TBL] [Abstract][Full Text] [Related]
8. Observation of gauge invariance in a 71-site Bose-Hubbard quantum simulator. Yang B; Sun H; Ott R; Wang HY; Zache TV; Halimeh JC; Yuan ZS; Hauke P; Pan JW Nature; 2020 Nov; 587(7834):392-396. PubMed ID: 33208959 [TBL] [Abstract][Full Text] [Related]
9. Coupling ultracold matter to dynamical gauge fields in optical lattices: From flux attachment to ℤ Barbiero L; Schweizer C; Aidelsburger M; Demler E; Goldman N; Grusdt F Sci Adv; 2019 Oct; 5(10):eaav7444. PubMed ID: 31646173 [TBL] [Abstract][Full Text] [Related]
10. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer. Martinez EA; Muschik CA; Schindler P; Nigg D; Erhard A; Heyl M; Hauke P; Dalmonte M; Monz T; Zoller P; Blatt R Nature; 2016 Jun; 534(7608):516-9. PubMed ID: 27337339 [TBL] [Abstract][Full Text] [Related]
11. Recent developments in quantum Monte Carlo simulations with applications for cold gases. Pollet L Rep Prog Phys; 2012 Sep; 75(9):094501. PubMed ID: 22885729 [TBL] [Abstract][Full Text] [Related]
12. Quantum Simulation of the Bosonic Creutz Ladder with a Parametric Cavity. Hung JSC; Busnaina JH; Chang CWS; Vadiraj AM; Nsanzineza I; Solano E; Alaeian H; Rico E; Wilson CM Phys Rev Lett; 2021 Sep; 127(10):100503. PubMed ID: 34533347 [TBL] [Abstract][Full Text] [Related]
13. Emergent gauge symmetries: making symmetry as well as breaking it. Bass SD Philos Trans A Math Phys Eng Sci; 2022 Feb; 380(2216):20210059. PubMed ID: 34923842 [TBL] [Abstract][Full Text] [Related]
14. Dynamical Gauge Fields with Bosonic Codes. Del Pino J; Zilberberg O Phys Rev Lett; 2023 Apr; 130(17):171901. PubMed ID: 37172225 [TBL] [Abstract][Full Text] [Related]
15. Dynamical Solitons and Boson Fractionalization in Cold-Atom Topological Insulators. González-Cuadra D; Dauphin A; Grzybowski PR; Lewenstein M; Bermudez A Phys Rev Lett; 2020 Dec; 125(26):265301. PubMed ID: 33449765 [TBL] [Abstract][Full Text] [Related]
16. Composite fermion theory for bosonic quantum Hall states on lattices. Möller G; Cooper NR Phys Rev Lett; 2009 Sep; 103(10):105303. PubMed ID: 19792327 [TBL] [Abstract][Full Text] [Related]
17. Atomic Bose-Fermi mixtures in an optical lattice. Lewenstein M; Santos L; Baranov MA; Fehrmann H Phys Rev Lett; 2004 Feb; 92(5):050401. PubMed ID: 14995287 [TBL] [Abstract][Full Text] [Related]
18. Dipolar physics: a review of experiments with magnetic quantum gases. Chomaz L; Ferrier-Barbut I; Ferlaino F; Laburthe-Tolra B; Lev BL; Pfau T Rep Prog Phys; 2022 Dec; 86(2):. PubMed ID: 36583342 [TBL] [Abstract][Full Text] [Related]
19. Loop-free tensor networks for high-energy physics. Montangero S; Rico E; Silvi P Philos Trans A Math Phys Eng Sci; 2022 Feb; 380(2216):20210065. PubMed ID: 34923837 [TBL] [Abstract][Full Text] [Related]
20. A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice. Bakr WS; Gillen JI; Peng A; Fölling S; Greiner M Nature; 2009 Nov; 462(7269):74-7. PubMed ID: 19890326 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]