These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 34923840)

  • 1. Quantum simulation of lattice gauge theories in more than one space dimension-requirements, challenges and methods.
    Zohar E
    Philos Trans A Math Phys Eng Sci; 2022 Feb; 380(2216):20210069. PubMed ID: 34923840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From quantum link models to D-theory: a resource efficient framework for the quantum simulation and computation of gauge theories.
    Wiese UJ
    Philos Trans A Math Phys Eng Sci; 2022 Feb; 380(2216):20210068. PubMed ID: 34923839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cold atoms meet lattice gauge theory.
    Aidelsburger M; Barbiero L; Bermudez A; Chanda T; Dauphin A; González-Cuadra D; Grzybowski PR; Hands S; Jendrzejewski F; Jünemann J; Juzeliūnas G; Kasper V; Piga A; Ran SJ; Rizzi M; Sierra G; Tagliacozzo L; Tirrito E; Zache TV; Zakrzewski J; Zohar E; Lewenstein M
    Philos Trans A Math Phys Eng Sci; 2022 Feb; 380(2216):20210064. PubMed ID: 34923836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Review on novel methods for lattice gauge theories.
    Carmen Bañuls M; Cichy K
    Rep Prog Phys; 2020 Feb; 83(2):024401. PubMed ID: 31846938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices.
    Zohar E; Cirac JI; Reznik B
    Rep Prog Phys; 2016 Jan; 79(1):014401. PubMed ID: 26684222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photon-Mediated Stroboscopic Quantum Simulation of a Z_{2} Lattice Gauge Theory.
    Armon T; Ashkenazi S; García-Moreno G; González-Tudela A; Zohar E
    Phys Rev Lett; 2021 Dec; 127(25):250501. PubMed ID: 35029424
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time dynamics of lattice gauge theories with a few-qubit quantum computer.
    Martinez EA; Muschik CA; Schindler P; Nigg D; Erhard A; Heyl M; Hauke P; Dalmonte M; Monz T; Zoller P; Blatt R
    Nature; 2016 Jun; 534(7608):516-9. PubMed ID: 27337339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Loop-free tensor networks for high-energy physics.
    Montangero S; Rico E; Silvi P
    Philos Trans A Math Phys Eng Sci; 2022 Feb; 380(2216):20210065. PubMed ID: 34923837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emergent gauge symmetries: making symmetry as well as breaking it.
    Bass SD
    Philos Trans A Math Phys Eng Sci; 2022 Feb; 380(2216):20210059. PubMed ID: 34923842
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-Abelian SU(2) Lattice Gauge Theories in Superconducting Circuits.
    Mezzacapo A; Rico E; Sabín C; Egusquiza IL; Lamata L; Solano E
    Phys Rev Lett; 2015 Dec; 115(24):240502. PubMed ID: 26705616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum Simulation of the Universal Features of the Polyakov Loop.
    Zhang J; Unmuth-Yockey J; Zeiher J; Bazavov A; Tsai SW; Meurice Y
    Phys Rev Lett; 2018 Nov; 121(22):223201. PubMed ID: 30547605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-dimensional lattice gauge theories with superconducting quantum circuits.
    Marcos D; Widmer P; Rico E; Hafezi M; Rabl P; Wiese UJ; Zoller P
    Ann Phys (N Y); 2014 Dec; 351():634-654. PubMed ID: 25512676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bounds on quantum information storage and retrieval.
    Dvali G
    Philos Trans A Math Phys Eng Sci; 2022 Feb; 380(2216):20210071. PubMed ID: 34923844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constrained dynamics via the Zeno effect in quantum simulation: implementing non-Abelian lattice gauge theories with cold atoms.
    Stannigel K; Hauke P; Marcos D; Hafezi M; Diehl S; Dalmonte M; Zoller P
    Phys Rev Lett; 2014 Mar; 112(12):120406. PubMed ID: 24724634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gauge Equivariant Neural Networks for Quantum Lattice Gauge Theories.
    Luo D; Carleo G; Clark BK; Stokes J
    Phys Rev Lett; 2021 Dec; 127(27):276402. PubMed ID: 35061436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Standard model physics and the digital quantum revolution: thoughts about the interface.
    Klco N; Roggero A; Savage MJ
    Rep Prog Phys; 2022 May; 85(6):. PubMed ID: 35213853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The spin structure of the nucleon.
    Deur A; Brodsky SJ; de Téramond GF
    Rep Prog Phys; 2019 Jul; 82(7):076201. PubMed ID: 30818290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observation of gauge invariance in a 71-site Bose-Hubbard quantum simulator.
    Yang B; Sun H; Ott R; Wang HY; Zache TV; Halimeh JC; Yuan ZS; Hauke P; Pan JW
    Nature; 2020 Nov; 587(7834):392-396. PubMed ID: 33208959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Digital Quantum Simulation of Z_{2} Lattice Gauge Theories with Dynamical Fermionic Matter.
    Zohar E; Farace A; Reznik B; Cirac JI
    Phys Rev Lett; 2017 Feb; 118(7):070501. PubMed ID: 28256852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.