These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 34923845)

  • 1. Prospective sensitivities of atom interferometers to gravitational waves and ultralight dark matter.
    Badurina L; Buchmueller O; Ellis J; Lewicki M; McCabe C; Vaskonen V
    Philos Trans A Math Phys Eng Sci; 2022 Feb; 380(2216):20210060. PubMed ID: 34923845
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the nature of black holes: Deep in the mHz gravitational-wave sky.
    Baibhav V; Barack L; Berti E; Bonga B; Brito R; Cardoso V; Compère G; Das S; Doneva D; Garcia-Bellido J; Heisenberg L; Hughes SA; Isi M; Jani K; Kavanagh C; Lukes-Gerakopoulos G; Mueller G; Pani P; Petiteau A; Rajendran S; Sotiriou TP; Stergioulas N; Taylor A; Vagenas E; van de Meent M; Warburton N; Wardell B; Witzany V; Zimmerman A
    Exp Astron (Dordr); 2021; 51(3):1385-1416. PubMed ID: 34720415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supermassive Black Holes, Ultralight Dark Matter, and Gravitational Waves from a First Order Phase Transition.
    Davoudiasl H; Denton PB; Gehrlein J
    Phys Rev Lett; 2022 Feb; 128(8):081101. PubMed ID: 35275682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stochastic gravitational wave backgrounds.
    Christensen N
    Rep Prog Phys; 2019 Jan; 82(1):016903. PubMed ID: 30462612
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Primordial black holes and the origin of the matter-antimatter asymmetry.
    García-Bellido J
    Philos Trans A Math Phys Eng Sci; 2019 Dec; 377(2161):20190091. PubMed ID: 31707963
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gravitational-wave astronomy: delivering on the promises.
    Schutz BF
    Philos Trans A Math Phys Eng Sci; 2018 May; 376(2120):. PubMed ID: 29661972
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LIGO: The Laser Interferometer Gravitational-Wave Observatory.
    Abramovici A; Althouse WE; Drever RW; Gürsel Y; Kawamura S; Raab FJ; Shoemaker D; Sievers L; Spero RE; Thorne KS; Vogt RE; Weiss R; Whitcomb SE; Zucker ME
    Science; 1992 Apr; 256(5055):325-33. PubMed ID: 17743108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cosmic String Interpretation of NANOGrav Pulsar Timing Data.
    Ellis J; Lewicki M
    Phys Rev Lett; 2021 Jan; 126(4):041304. PubMed ID: 33576656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The missing link in gravitational-wave astronomy: A summary of discoveries waiting in the decihertz range.
    Sedda MA; Berry CPL; Jani K; Amaro-Seoane P; Auclair P; Baird J; Baker T; Berti E; Breivik K; Caprini C; Chen X; Doneva D; Ezquiaga JM; Ford KES; Katz ML; Kolkowitz S; McKernan B; Mueller G; Nardini G; Pikovski I; Rajendran S; Sesana A; Shao L; Tamanini N; Warburton N; Witek H; Wong K; Zevin M
    Exp Astron (Dordr); 2021; 51(3):1427-1440. PubMed ID: 34720416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stochastic Gravitational-Wave Background due to Primordial Binary Black Hole Mergers.
    Mandic V; Bird S; Cholis I
    Phys Rev Lett; 2016 Nov; 117(20):201102. PubMed ID: 27886472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LIGO and the opening of a unique observational window on the universe.
    Kalogera V; Lazzarini A
    Proc Natl Acad Sci U S A; 2017 Mar; 114(12):3017-3025. PubMed ID: 28283663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gravitational-wave stochastic background from cosmic strings.
    Siemens X; Mandic V; Creighton J
    Phys Rev Lett; 2007 Mar; 98(11):111101. PubMed ID: 17501038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Search for Gravitational Waves from High-Mass-Ratio Compact-Binary Mergers of Stellar Mass and Subsolar Mass Black Holes.
    Nitz AH; Wang YF
    Phys Rev Lett; 2021 Jan; 126(2):021103. PubMed ID: 33512196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A topic review on probing primordial black hole dark matter with scalar induced gravitational waves.
    Yuan C; Huang QG
    iScience; 2021 Aug; 24(8):102860. PubMed ID: 34401659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can LIGO Detect Nonannihilating Dark Matter?
    Bhattacharya S; Dasgupta B; Laha R; Ray A
    Phys Rev Lett; 2023 Sep; 131(9):091401. PubMed ID: 37721848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Did LIGO Detect Dark Matter?
    Bird S; Cholis I; Muñoz JB; Ali-Haïmoud Y; Kamionkowski M; Kovetz ED; Raccanelli A; Riess AG
    Phys Rev Lett; 2016 May; 116(20):201301. PubMed ID: 27258861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of early-universe gravitational-wave signatures and fundamental physics.
    Caldwell R; Cui Y; Guo HK; Mandic V; Mariotti A; No JM; Ramsey-Musolf MJ; Sakellariadou M; Sinha K; Wang LT; White G; Zhao Y; An H; Bian L; Caprini C; Clesse S; Cline JM; Cusin G; Fornal B; Jinno R; Laurent B; Levi N; Lyu KF; Martinez M; Miller AL; Redigolo D; Scarlata C; Sevrin A; Haghi BSE; Shu J; Siemens X; Steer DA; Sundrum R; Tamarit C; Weir DJ; Xie KP; Yang FW; Zhou S
    Gen Relativ Gravit; 2022; 54(12):156. PubMed ID: 36465478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primordial Black Hole Dark Matter: LISA Serendipity.
    Bartolo N; De Luca V; Franciolini G; Lewis A; Peloso M; Riotto A
    Phys Rev Lett; 2019 May; 122(21):211301. PubMed ID: 31283317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Circular Polarization of the Astrophysical Gravitational Wave Background.
    Valbusa Dall'Armi L; Nishizawa A; Ricciardone A; Matarrese S
    Phys Rev Lett; 2023 Jul; 131(4):041401. PubMed ID: 37566858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constraints on primordial black holes.
    Carr B; Kohri K; Sendouda Y; Yokoyama J
    Rep Prog Phys; 2021 Dec; 84(11):. PubMed ID: 34874316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.