These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 34923956)

  • 1. InMut-finder: a software tool for insertion identification in mutagenesis using Nanopore long reads.
    Song R; Wang Z; Wang H; Zhang H; Wang X; Nguyen H; Holding D; Yu B; Clemente T; Jia S; Zhang C
    BMC Genomics; 2021 Dec; 22(1):908. PubMed ID: 34923956
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noise-cancelling repeat finder: uncovering tandem repeats in error-prone long-read sequencing data.
    Harris RS; Cechova M; Makova KD
    Bioinformatics; 2019 Nov; 35(22):4809-4811. PubMed ID: 31290946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ITIS, a bioinformatics tool for accurate identification of transposon insertion sites using next-generation sequencing data.
    Jiang C; Chen C; Huang Z; Liu R; Verdier J
    BMC Bioinformatics; 2015 Mar; 16(1):72. PubMed ID: 25887332
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NanoSNP: a progressive and haplotype-aware SNP caller on low-coverage nanopore sequencing data.
    Huang N; Xu M; Nie F; Ni P; Xiao CL; Luo F; Wang J
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36548365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of Transposition Events from Next-Generation Sequencing Data.
    Miyao A
    Methods Mol Biol; 2021; 2250():123-129. PubMed ID: 33900599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. TIP_finder: An HPC Software to Detect Transposable Element Insertion Polymorphisms in Large Genomic Datasets.
    Orozco-Arias S; Tobon-Orozco N; Piña JS; Jiménez-Varón CF; Tabares-Soto R; Guyot R
    Biology (Basel); 2020 Sep; 9(9):. PubMed ID: 32917036
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of strategies for the assembly of diverse bacterial genomes using MinION long-read sequencing.
    Goldstein S; Beka L; Graf J; Klassen JL
    BMC Genomics; 2019 Jan; 20(1):23. PubMed ID: 30626323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ESSENTIALS: software for rapid analysis of high throughput transposon insertion sequencing data.
    Zomer A; Burghout P; Bootsma HJ; Hermans PW; van Hijum SA
    PLoS One; 2012; 7(8):e43012. PubMed ID: 22900082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deepbinner: Demultiplexing barcoded Oxford Nanopore reads with deep convolutional neural networks.
    Wick RR; Judd LM; Holt KE
    PLoS Comput Biol; 2018 Nov; 14(11):e1006583. PubMed ID: 30458005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polishing the Oxford Nanopore long-read assemblies of bacterial pathogens with Illumina short reads to improve genomic analyses.
    Chen Z; Erickson DL; Meng J
    Genomics; 2021 May; 113(3):1366-1377. PubMed ID: 33716184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-read sequencing for identification of insertion sites in large transposon mutant libraries.
    Yasir M; Turner AK; Lott M; Rudder S; Baker D; Bastkowski S; Page AJ; Webber MA; Charles IG
    Sci Rep; 2022 Mar; 12(1):3546. PubMed ID: 35241765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Are we there yet? Benchmarking low-coverage nanopore long-read sequencing for the assembling of mitochondrial genomes using the vulnerable silky shark Carcharhinus falciformis.
    Baeza JA; García-De León FJ
    BMC Genomics; 2022 Apr; 23(1):320. PubMed ID: 35459089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Halcyon: an accurate basecaller exploiting an encoder-decoder model with monotonic attention.
    Konishi H; Yamaguchi R; Yamaguchi K; Furukawa Y; Imoto S
    Bioinformatics; 2021 Jun; 37(9):1211-1217. PubMed ID: 33165508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNAscent v2: detecting replication forks in nanopore sequencing data with deep learning.
    Boemo MA
    BMC Genomics; 2021 Jun; 22(1):430. PubMed ID: 34107894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DeepSimulator: a deep simulator for Nanopore sequencing.
    Li Y; Han R; Bi C; Li M; Wang S; Gao X
    Bioinformatics; 2018 Sep; 34(17):2899-2908. PubMed ID: 29659695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High precision genome sequencing of engineered Gluconobacter oxydans 621H by combining long nanopore and short accurate Illumina reads.
    Kranz A; Vogel A; Degner U; Kiefler I; Bott M; Usadel B; Polen T
    J Biotechnol; 2017 Sep; 258():197-205. PubMed ID: 28433722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined use of Oxford Nanopore and Illumina sequencing yields insights into soybean structural variation biology.
    Lemay MA; Sibbesen JA; Torkamaneh D; Hamel J; Levesque RC; Belzile F
    BMC Biol; 2022 Feb; 20(1):53. PubMed ID: 35197050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel algorithms for efficient subsequence searching and mapping in nanopore raw signals towards targeted sequencing.
    Han R; Wang S; Gao X
    Bioinformatics; 2020 Mar; 36(5):1333-1343. PubMed ID: 31593235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequoia: an interactive visual analytics platform for interpretation and feature extraction from nanopore sequencing datasets.
    Koonchanok R; Daulatabad SV; Mir Q; Reda K; Janga SC
    BMC Genomics; 2021 Jul; 22(1):513. PubMed ID: 34233619
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid correction of highly noisy long reads using a variable-order de Bruijn graph.
    Morisse P; Lecroq T; Lefebvre A
    Bioinformatics; 2018 Dec; 34(24):4213-4222. PubMed ID: 29955770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.