These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34924367)

  • 1. The effects of non-Newtonian blood modeling and pulsatility on hemodynamics in the food and drug administration's benchmark nozzle model.
    Good BC
    Biorheology; 2023; 59(1-2):1-18. PubMed ID: 34924367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational modeling of the Food and Drug Administration's benchmark centrifugal blood pump.
    Good BC; Manning KB
    Artif Organs; 2020 Jul; 44(7):E263-E276. PubMed ID: 31971269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multilaboratory particle image velocimetry analysis of the FDA benchmark nozzle model to support validation of computational fluid dynamics simulations.
    Hariharan P; Giarra M; Reddy V; Day SW; Manning KB; Deutsch S; Stewart SF; Myers MR; Berman MR; Burgreen GW; Paterson EG; Malinauskas RA
    J Biomech Eng; 2011 Apr; 133(4):041002. PubMed ID: 21428676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inter-Laboratory Characterization of the Velocity Field in the FDA Blood Pump Model Using Particle Image Velocimetry (PIV).
    Hariharan P; Aycock KI; Buesen M; Day SW; Good BC; Herbertson LH; Steinseifer U; Manning KB; Craven BA; Malinauskas RA
    Cardiovasc Eng Technol; 2018 Dec; 9(4):623-640. PubMed ID: 30291585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical investigation of different viscosity models on pulsatile blood flow of thoracic aortic aneurysm (TAA) in a patient-specific model.
    Faraji A; Sahebi M; SalavatiDezfouli S
    Comput Methods Biomech Biomed Engin; 2023 Jun; 26(8):986-998. PubMed ID: 35882063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hemodynamic analysis of hybrid treatment for thoracoabdominal aortic aneurysm based on Newtonian and non-Newtonian models in a patient-specific model.
    Wen J; Wang J; Peng L; Yuan D; Zheng T
    Comput Methods Biomech Biomed Engin; 2023 Feb; 26(2):209-221. PubMed ID: 35414317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Finite element computation of magneto-hemodynamic flow and heat transfer in a bifurcated artery with saccular aneurysm using the Carreau-Yasuda biorheological model.
    Dubey A; B V; Bég OA; Gorla RSR
    Microvasc Res; 2021 Nov; 138():104221. PubMed ID: 34271062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of Vortices in Idealised Branching Vessels: A CFD Benchmark Study.
    Xue Y; Hellmuth R; Shin DH
    Cardiovasc Eng Technol; 2020 Oct; 11(5):544-559. PubMed ID: 32666327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accounting for residence-time in blood rheology models: do we really need non-Newtonian blood flow modelling in large arteries?
    Arzani A
    J R Soc Interface; 2018 Sep; 15(146):. PubMed ID: 30257924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational Prediction of Thrombosis in Food and Drug Administration's Benchmark Nozzle.
    Qiao Y; Luo K; Fan J
    Front Physiol; 2022; 13():867613. PubMed ID: 35547578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro flow study in a compliant abdominal aorta phantom with a non-Newtonian blood-mimicking fluid.
    Moravia A; Simoëns S; El Hajem M; Bou-Saïd B; Kulisa P; Della-Schiava N; Lermusiaux P
    J Biomech; 2022 Jan; 130():110899. PubMed ID: 34923186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large eddy simulation of the FDA benchmark nozzle for a Reynolds number of 6500.
    Janiga G
    Comput Biol Med; 2014 Apr; 47():113-9. PubMed ID: 24561349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On delayed transition to turbulence in an eccentric stenosis model for clean vs. noisy high-fidelity CFD.
    Haley AL; Valen-Sendstad K; Steinman DA
    J Biomech; 2021 Aug; 125():110588. PubMed ID: 34218038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Transition to Turbulence for Blood in a Straight Pipe Under Steady Flow Conditions.
    Biswas D; Casey DM; Crowder DC; Steinman DA; Yun YH; Loth F
    J Biomech Eng; 2016 Jul; 138(7):. PubMed ID: 27109010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FDA Benchmark Medical Device Flow Models for CFD Validation.
    Malinauskas RA; Hariharan P; Day SW; Herbertson LH; Buesen M; Steinseifer U; Aycock KI; Good BC; Deutsch S; Manning KB; Craven BA
    ASAIO J; 2017; 63(2):150-160. PubMed ID: 28114192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Newtonian and non-Newtonian blood flow in coiled cerebral aneurysms.
    Morales HG; Larrabide I; Geers AJ; Aguilar ML; Frangi AF
    J Biomech; 2013 Sep; 46(13):2158-64. PubMed ID: 23891312
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficacy of the FDA nozzle benchmark and the lattice Boltzmann method for the analysis of biomedical flows in transitional regime.
    Jain K
    Med Biol Eng Comput; 2020 Aug; 58(8):1817-1830. PubMed ID: 32507933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of non-Newtonian fluid rheology on an arterial bypass graft: A numerical investigation guided by constructal design.
    Dutra RF; Zinani FSF; Rocha LAO; Biserni C
    Comput Methods Programs Biomed; 2021 Apr; 201():105944. PubMed ID: 33535083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multilaboratory study of flow-induced hemolysis using the FDA benchmark nozzle model.
    Herbertson LH; Olia SE; Daly A; Noatch CP; Smith WA; Kameneva MV; Malinauskas RA
    Artif Organs; 2015 Mar; 39(3):237-48. PubMed ID: 25180887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating the impact of non-Newtonian blood models within a heart pump.
    Al-Azawy MG; Turan A; Revell A
    Int J Numer Method Biomed Eng; 2017 Jan; 33(1):. PubMed ID: 26919069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.