These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 34924478)
1. [Effects of Image-based Noise Reduction Software on Magnetic Resonance Imaging]. Yamamuro O; Tsukijima M Nihon Hoshasen Gijutsu Gakkai Zasshi; 2021; 77(12):1416-1423. PubMed ID: 34924478 [TBL] [Abstract][Full Text] [Related]
2. Simultaneous Multislice Accelerated Turbo Spin Echo Magnetic Resonance Imaging: Comparison and Combination With In-Plane Parallel Imaging Acceleration for High-Resolution Magnetic Resonance Imaging of the Knee. Fritz J; Fritz B; Zhang J; Thawait GK; Joshi DH; Pan L; Wang D Invest Radiol; 2017 Sep; 52(9):529-537. PubMed ID: 28430716 [TBL] [Abstract][Full Text] [Related]
3. Feasibility of high-resolution magnetic resonance imaging of the liver using deep learning reconstruction based on the deep learning denoising technique. Tanabe M; Higashi M; Yonezawa T; Yamaguchi T; Iida E; Furukawa M; Okada M; Shinoda K; Ito K Magn Reson Imaging; 2021 Jul; 80():121-126. PubMed ID: 33971240 [TBL] [Abstract][Full Text] [Related]
4. Super-Resolution Magnetic Resonance Imaging of the Knee Using 2-Dimensional Turbo Spin Echo Imaging. Van Dyck P; Smekens C; Vanhevel F; De Smet E; Roelant E; Sijbers J; Jeurissen B Invest Radiol; 2020 Aug; 55(8):481-493. PubMed ID: 32404629 [TBL] [Abstract][Full Text] [Related]
5. Signal-to-noise ratio evaluation of magnetic resonance images in the presence of an ultrasonic motor. Shokrollahi P; Drake JM; Goldenberg AA Biomed Eng Online; 2017 Apr; 16(1):45. PubMed ID: 28410615 [TBL] [Abstract][Full Text] [Related]
6. Three-Dimensional CAIPIRINHA SPACE TSE for 5-Minute High-Resolution MRI of the Knee. Fritz J; Fritz B; Thawait GG; Meyer H; Gilson WD; Raithel E Invest Radiol; 2016 Oct; 51(10):609-17. PubMed ID: 27187045 [TBL] [Abstract][Full Text] [Related]
7. Software-based noise reduction in cranial magnetic resonance imaging: Influence on image quality. Fuelkell P; Langner S; Friedrich N; Kromrey ML; Radosa CG; Platzek I; Mensel B; Kühn JP PLoS One; 2018; 13(11):e0206196. PubMed ID: 30383774 [TBL] [Abstract][Full Text] [Related]
8. Noise power spectrum in compressed sensing magnetic resonance imaging. Takahashi J; Machida Y; Aoba M; Nawa Y; Kamoshida R; Fukuzawa K; Ohmoto-Sekine Y Radiol Phys Technol; 2021 Mar; 14(1):93-99. PubMed ID: 33484401 [TBL] [Abstract][Full Text] [Related]
9. Adaptive nonlocal means filtering based on local noise level for CT denoising. Li Z; Yu L; Trzasko JD; Lake DS; Blezek DJ; Fletcher JG; McCollough CH; Manduca A Med Phys; 2014 Jan; 41(1):011908. PubMed ID: 24387516 [TBL] [Abstract][Full Text] [Related]
10. Quantification and improvement of the signal-to-noise ratio in a magnetic resonance image acquisition procedure. Sijbers J; Scheunders P; Bonnet N; Van Dyck D; Raman E Magn Reson Imaging; 1996; 14(10):1157-63. PubMed ID: 9065906 [TBL] [Abstract][Full Text] [Related]
11. MR susceptibility contrast imaging using a 2D simultaneous multi-slice gradient-echo sequence at 7T. Bian W; Kerr AB; Tranvinh E; Parivash S; Zahneisen B; Han MH; Lock CB; Goubran M; Zhu K; Rutt BK; Zeineh MM PLoS One; 2019; 14(7):e0219705. PubMed ID: 31314813 [TBL] [Abstract][Full Text] [Related]
12. Improvement of the SNR and resolution of susceptibility-weighted venography by model-based multi-echo denoising. Jang U; Nam Y; Kim DH; Hwang D Neuroimage; 2013 Apr; 70():308-16. PubMed ID: 23296184 [TBL] [Abstract][Full Text] [Related]
13. Denoising MRI using spectral subtraction. Erturk MA; Bottomley PA; El-Sharkawy AM IEEE Trans Biomed Eng; 2013 Jun; 60(6):1556-62. PubMed ID: 23322757 [TBL] [Abstract][Full Text] [Related]
14. [Consideration on SNR in Synthetic MRI]. Ikeda A; Yoshikawa K Nihon Hoshasen Gijutsu Gakkai Zasshi; 2019; 75(2):160-166. PubMed ID: 30787222 [TBL] [Abstract][Full Text] [Related]
15. Wavelet packet denoising of magnetic resonance images: importance of Rician noise at low SNR. Wood JC; Johnson KM Magn Reson Med; 1999 Mar; 41(3):631-5. PubMed ID: 10204890 [TBL] [Abstract][Full Text] [Related]
16. Deep Learning Based Noise Reduction for Brain MR Imaging: Tests on Phantoms and Healthy Volunteers. Kidoh M; Shinoda K; Kitajima M; Isogawa K; Nambu M; Uetani H; Morita K; Nakaura T; Tateishi M; Yamashita Y; Yamashita Y Magn Reson Med Sci; 2020 Aug; 19(3):195-206. PubMed ID: 31484849 [TBL] [Abstract][Full Text] [Related]
17. Analysis of physiological noise in quantitative cardiac magnetic resonance. Jao T; Nayak K PLoS One; 2019; 14(8):e0214566. PubMed ID: 31454354 [TBL] [Abstract][Full Text] [Related]
18. Post-processing noise removal algorithm for magnetic resonance imaging based on edge detection and wavelet analysis. Placidi G; Alecci M; Sotgiu A Phys Med Biol; 2003 Jul; 48(13):1987-95. PubMed ID: 12884930 [TBL] [Abstract][Full Text] [Related]
19. Superiority of 3D wavelet-packet denoising in MR microscopy. Ghugre NR; Martin M; Scadeng M; Ruffins S; Hiltner T; Pautler R; Waters C; Readhead C; Jacobs R; Wood JC Magn Reson Imaging; 2003 Oct; 21(8):913-21. PubMed ID: 14599542 [TBL] [Abstract][Full Text] [Related]