These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 34924925)

  • 1. Brain-Inspired Hardware Solutions for Inference in Bayesian Networks.
    Bagheriye L; Kwisthout J
    Front Neurosci; 2021; 15():728086. PubMed ID: 34924925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An FPGA implementation of Bayesian inference with spiking neural networks.
    Li H; Wan B; Fang Y; Li Q; Liu JK; An L
    Front Neurosci; 2023; 17():1291051. PubMed ID: 38249589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hardware-Efficient Stochastic Binary CNN Architectures for Near-Sensor Computing.
    Parmar V; Penkovsky B; Querlioz D; Suri M
    Front Neurosci; 2021; 15():781786. PubMed ID: 35069101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design Space Exploration of Hardware Spiking Neurons for Embedded Artificial Intelligence.
    Abderrahmane N; Lemaire E; Miramond B
    Neural Netw; 2020 Jan; 121():366-386. PubMed ID: 31593842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FPNA: interaction between FPGA and neural computation.
    Girau B
    Int J Neural Syst; 2000 Jun; 10(3):243-59. PubMed ID: 11011795
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Memristive crossbar arrays for brain-inspired computing.
    Xia Q; Yang JJ
    Nat Mater; 2019 Apr; 18(4):309-323. PubMed ID: 30894760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advancements in Algorithms and Neuromorphic Hardware for Spiking Neural Networks.
    Javanshir A; Nguyen TT; Mahmud MAP; Kouzani AZ
    Neural Comput; 2022 May; 34(6):1289-1328. PubMed ID: 35534005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Energy-Efficient Bayesian Neural Network Implementation Using Stochastic Computing Method.
    Jia X; Gu H; Liu Y; Yang J; Wang X; Pan W; Zhang Y; Cotofana S; Zhao W
    IEEE Trans Neural Netw Learn Syst; 2024 Sep; 35(9):12913-12923. PubMed ID: 37134041
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cost-effective stochastic MAC circuits for deep neural networks.
    Sim H; Lee J
    Neural Netw; 2019 Sep; 117():152-162. PubMed ID: 31170575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stochastic-HD: Leveraging Stochastic Computing on the Hyper-Dimensional Computing Pipeline.
    Morris J; Hao Y; Gupta S; Khaleghi B; Aksanli B; Rosing T
    Front Neurosci; 2022; 16():867192. PubMed ID: 35706689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benchmarking Highly Parallel Hardware for Spiking Neural Networks in Robotics.
    Steffen L; Koch R; Ulbrich S; Nitzsche S; Roennau A; Dillmann R
    Front Neurosci; 2021; 15():667011. PubMed ID: 34267622
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuromorphic Sentiment Analysis Using Spiking Neural Networks.
    Chunduri RK; Perera DG
    Sensors (Basel); 2023 Sep; 23(18):. PubMed ID: 37765758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Design Methodology for Fault-Tolerant Neuromorphic Computing Using Bayesian Neural Network.
    Gao D; Xie X; Wei D
    Micromachines (Basel); 2023 Sep; 14(10):. PubMed ID: 37893277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compact Hardware Synthesis of Stochastic Spiking Neural Networks.
    Galán-Prado F; Morán A; Font J; Roca M; Rosselló JL
    Int J Neural Syst; 2019 Oct; 29(8):1950004. PubMed ID: 30880526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benchmarking Artificial Neural Network Architectures for High-Performance Spiking Neural Networks.
    Islam R; Majurski P; Kwon J; Sharma A; Tummala SRSK
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Memristors for Neuromorphic Circuits and Artificial Intelligence Applications.
    Miranda E; Suñé J
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32093164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accelerated Physical Emulation of Bayesian Inference in Spiking Neural Networks.
    Kungl AF; Schmitt S; Klähn J; Müller P; Baumbach A; Dold D; Kugele A; Müller E; Koke C; Kleider M; Mauch C; Breitwieser O; Leng L; Gürtler N; Güttler M; Husmann D; Husmann K; Hartel A; Karasenko V; Grübl A; Schemmel J; Meier K; Petrovici MA
    Front Neurosci; 2019; 13():1201. PubMed ID: 31798400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Generalised Analog LSTMs Recurrent Modules for Neural Computing.
    Adam K; Smagulova K; James A
    Front Comput Neurosci; 2021; 15():705050. PubMed ID: 34650420
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implementation of Bayesian networks and Bayesian inference using a Cu
    Baek IK; Lee SH; Jang YH; Park H; Kim J; Cheong S; Shim SK; Han J; Han JK; Jeon GS; Shin DH; Woo KS; Hwang CS
    Nanoscale Adv; 2024 May; 6(11):2892-2902. PubMed ID: 38817425
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using a Low-Power Spiking Continuous Time Neuron (SCTN) for Sound Signal Processing.
    Bensimon M; Greenberg S; Haiut M
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33557214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.