BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 34924925)

  • 21. On-Chip Training Spiking Neural Networks Using Approximated Backpropagation With Analog Synaptic Devices.
    Kwon D; Lim S; Bae JH; Lee ST; Kim H; Seo YT; Oh S; Kim J; Yeom K; Park BG; Lee JH
    Front Neurosci; 2020; 14():423. PubMed ID: 32733180
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Implementation of Bayesian networks and Bayesian inference using a Cu
    Baek IK; Lee SH; Jang YH; Park H; Kim J; Cheong S; Shim SK; Han J; Han JK; Jeon GS; Shin DH; Woo KS; Hwang CS
    Nanoscale Adv; 2024 May; 6(11):2892-2902. PubMed ID: 38817425
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Probabilistic inference in discrete spaces can be implemented into networks of LIF neurons.
    Probst D; Petrovici MA; Bytschok I; Bill J; Pecevski D; Schemmel J; Meier K
    Front Comput Neurosci; 2015; 9():13. PubMed ID: 25729361
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Probabilistic Neural Computing with Stochastic Devices.
    Misra S; Bland LC; Cardwell SG; Incorvia JAC; James CD; Kent AD; Schuman CD; Smith JD; Aimone JB
    Adv Mater; 2023 Sep; 35(37):e2204569. PubMed ID: 36395387
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advancing interconnect density for spiking neural network hardware implementations using traffic-aware adaptive network-on-chip routers.
    Carrillo S; Harkin J; McDaid L; Pande S; Cawley S; McGinley B; Morgan F
    Neural Netw; 2012 Sep; 33():42-57. PubMed ID: 22561008
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hardware Design for Autonomous Bayesian Networks.
    Faria R; Kaiser J; Camsari KY; Datta S
    Front Comput Neurosci; 2021; 15():584797. PubMed ID: 33762919
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparing Neuromorphic Solutions in Action: Implementing a Bio-Inspired Solution to a Benchmark Classification Task on Three Parallel-Computing Platforms.
    Diamond A; Nowotny T; Schmuker M
    Front Neurosci; 2015; 9():491. PubMed ID: 26778950
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spiking CMOS-NVM mixed-signal neuromorphic ConvNet with circuit- and training-optimized temporal subsampling.
    Dorzhigulov A; Saxena V
    Front Neurosci; 2023; 17():1177592. PubMed ID: 37534034
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hardware implementation of Bayesian network building blocks with stochastic spintronic devices.
    Debashis P; Ostwal V; Faria R; Datta S; Appenzeller J; Chen Z
    Sci Rep; 2020 Sep; 10(1):16002. PubMed ID: 32994448
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Robustness of spiking Deep Belief Networks to noise and reduced bit precision of neuro-inspired hardware platforms.
    Stromatias E; Neil D; Pfeiffer M; Galluppi F; Furber SB; Liu SC
    Front Neurosci; 2015; 9():222. PubMed ID: 26217169
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vector Symbolic Architectures as a Computing Framework for Emerging Hardware.
    Kleyko D; Davies M; Frady EP; Kanerva P; Kent SJ; Olshausen BA; Osipov E; Rabaey JM; Rachkovskij DA; Rahimi A; Sommer FT
    Proc IEEE Inst Electr Electron Eng; 2022 Oct; 110(10):1538-1571. PubMed ID: 37868615
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Cost-Efficient High-Speed VLSI Architecture for Spiking Convolutional Neural Network Inference Using Time-Step Binary Spike Maps.
    Zhang L; Yang J; Shi C; Lin Y; He W; Zhou X; Yang X; Liu L; Wu N
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577214
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bitstream-Based Neural Network for Scalable, Efficient, and Accurate Deep Learning Hardware.
    Sim H; Lee J
    Front Neurosci; 2020; 14():543472. PubMed ID: 33424530
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Compact hardware liquid state machines on FPGA for real-time speech recognition.
    Schrauwen B; D'Haene M; Verstraeten D; Campenhout JV
    Neural Netw; 2008; 21(2-3):511-23. PubMed ID: 18222634
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Digital design of a spatial-pow-STDP learning block with high accuracy utilizing pow CORDIC for large-scale image classifier spatiotemporal SNN.
    Bahrami MK; Nazari S
    Sci Rep; 2024 Feb; 14(1):3388. PubMed ID: 38337032
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Digital Implementation of Oscillatory Neural Network for Image Recognition Applications.
    Abernot M; Gil T; Jiménez M; Núñez J; Avellido MJ; Linares-Barranco B; Gonos T; Hardelin T; Todri-Sanial A
    Front Neurosci; 2021; 15():713054. PubMed ID: 34512246
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ReplaceNet: real-time replacement of a biological neural circuit with a hardware-assisted spiking neural network.
    Hwang S; Hwang Y; Kim D; Lee J; Choe HK; Lee J; Kang H; Kung J
    Front Neurosci; 2023; 17():1161592. PubMed ID: 37638314
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison between Frame-Constrained Fix-Pixel-Value and Frame-Free Spiking-Dynamic-Pixel ConvNets for Visual Processing.
    Farabet C; Paz R; Pérez-Carrasco J; Zamarreño-Ramos C; Linares-Barranco A; Lecun Y; Culurciello E; Serrano-Gotarredona T; Linares-Barranco B
    Front Neurosci; 2012; 6():32. PubMed ID: 22518097
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Performance/price estimates for cortex-scale hardware: a design space exploration.
    Zaveri MS; Hammerstrom D
    Neural Netw; 2011 Apr; 24(3):291-304. PubMed ID: 21232918
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Online Supervised Learning for Hardware-Based Multilayer Spiking Neural Networks Through the Modulation of Weight-Dependent Spike-Timing-Dependent Plasticity.
    Zheng N; Mazumder P
    IEEE Trans Neural Netw Learn Syst; 2018 Sep; 29(9):4287-4302. PubMed ID: 29990088
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.