BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 34924937)

  • 1. The Role of Central Command in the Increase in Muscle Sympathetic Nerve Activity to Contracting Muscle During High Intensity Isometric Exercise.
    Boulton D; Taylor CE; Green S; Macefield VG
    Front Neurosci; 2021; 15():770072. PubMed ID: 34924937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The metaboreflex does not contribute to the increase in muscle sympathetic nerve activity to contracting muscle during static exercise in humans.
    Boulton D; Taylor CE; Green S; Macefield VG
    J Physiol; 2018 Mar; 596(6):1091-1102. PubMed ID: 29315576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Comparison of Muscle Sympathetic Nerve Activity to Non-contracting Muscle During Isometric Exercise in the Upper and Lower Limbs.
    Boulton D; Green S; Macefield VG; Taylor CE
    Front Neurosci; 2019; 13():341. PubMed ID: 31024247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Central command increases muscle sympathetic nerve activity more to contracting than noncontracting muscle during rhythmic isotonic leg exercise.
    Taylor CE; Boulton D; Howden EJ; Siebenmann C; Macefield VG
    J Neurophysiol; 2019 May; 121(5):1704-1710. PubMed ID: 30864865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contributions of Central Command and Muscle Feedback to Sympathetic Nerve Activity in Contracting Human Skeletal Muscle.
    Boulton D; Taylor CE; Macefield VG; Green S
    Front Physiol; 2016; 7():163. PubMed ID: 27242537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-intensity muscle metaboreflex activation attenuates cardiopulmonary baroreflex-mediated inhibition of muscle sympathetic nerve activity.
    Katayama K; Kaur J; Young BE; Barbosa TC; Ogoh S; Fadel PJ
    J Appl Physiol (1985); 2018 Sep; 125(3):812-819. PubMed ID: 29672226
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of contraction intensity on sympathetic nerve activity to active human skeletal muscle.
    Boulton D; Taylor CE; Macefield VG; Green S
    Front Physiol; 2014; 5():194. PubMed ID: 24917823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Muscle pump-induced inhibition of sympathetic vasomotor outflow during low-intensity leg cycling is attenuated by muscle metaboreflex activation.
    Katayama K; Barbosa TC; Kaur J; Young BE; Nandadeva D; Ogoh S; Fadel PJ
    J Appl Physiol (1985); 2020 Jan; 128(1):1-7. PubMed ID: 31725363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Augmented pressor and sympathetic responses to skeletal muscle metaboreflex activation in type 2 diabetes patients.
    Holwerda SW; Restaino RM; Manrique C; Lastra G; Fisher JP; Fadel PJ
    Am J Physiol Heart Circ Physiol; 2016 Jan; 310(2):H300-9. PubMed ID: 26566729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Central command increases muscle sympathetic nerve activity during intense intermittent isometric exercise in humans.
    Victor RG; Secher NH; Lyson T; Mitchell JH
    Circ Res; 1995 Jan; 76(1):127-31. PubMed ID: 8001270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Muscle sympathetic nerve activity (MSNA) during high-intensity, isometric leg exercise in humans.
    Kamiya A; Michikami D; Fu Q; Niimi Y; Iwase S
    Environ Med; 2000 Dec; 44(1):49-52. PubMed ID: 12296370
    [TBL] [Abstract][Full Text] [Related]  

  • 12. GABA
    Teixeira AL; Fernandes IA; Vianna LC
    J Physiol; 2019 Aug; 597(16):4139-4150. PubMed ID: 31247674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capsaicin-based analgesic balm attenuates the skeletal muscle metaboreflex in healthy humans.
    Vianna LC; Fernandes IA; Barbosa TC; Teixeira AL; Nóbrega ACL
    J Appl Physiol (1985); 2018 Aug; 125(2):362-368. PubMed ID: 29698108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of sympathetic nerve activity during posthandgrip muscle ischemia in humans.
    Ray CA; Secher NH; Mark AL
    Am J Physiol; 1994 Jan; 266(1 Pt 2):H79-83. PubMed ID: 8304526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sympathetic neural discharge and vascular resistance during exercise in humans.
    Seals DR
    J Appl Physiol (1985); 1989 May; 66(5):2472-8. PubMed ID: 2745308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Muscle metaboreflex control is diminished in normotensive obese women.
    Negrão CE; Trombetta IC; Batalha LT; Ribeiro MM; Rondon MU; Tinucci T; Forjaz CL; Barretto AC; Halpern A; Villares SM
    Am J Physiol Heart Circ Physiol; 2001 Aug; 281(2):H469-75. PubMed ID: 11454547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Augmented pressor and sympathoexcitatory responses to the onset of isometric handgrip in patients with type 2 diabetes.
    Vranish JR; Holwerda SW; Kaur J; Fadel PJ
    Am J Physiol Regul Integr Comp Physiol; 2020 Feb; 318(2):R311-R319. PubMed ID: 31823673
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of sympathetic nerve responses to neck and forearm isometric exercise.
    Steele SL; Ray CA
    Med Sci Sports Exerc; 2000 Jun; 32(6):1109-13. PubMed ID: 10862537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exaggerated sympathetic and pressor responses to handgrip exercise in older hypertensive humans: role of the muscle metaboreflex.
    Delaney EP; Greaney JL; Edwards DG; Rose WC; Fadel PJ; Farquhar WB
    Am J Physiol Heart Circ Physiol; 2010 Nov; 299(5):H1318-27. PubMed ID: 20802135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of muscle sympathetic nerve activity during exercise in humans.
    Seals DR; Victor RG
    Exerc Sport Sci Rev; 1991; 19():313-49. PubMed ID: 1936089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.