BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

359 related articles for article (PubMed ID: 34925392)

  • 1. Plant Copper Metalloenzymes As Prospects for New Metabolism Involving Aromatic Compounds.
    Mydy LS; Chigumba DN; Kersten RD
    Front Plant Sci; 2021; 12():692108. PubMed ID: 34925392
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery and biosynthesis of cyclic plant peptides via autocatalytic cyclases.
    Chigumba DN; Mydy LS; de Waal F; Li W; Shafiq K; Wotring JW; Mohamed OG; Mladenovic T; Tripathi A; Sexton JZ; Kautsar S; Medema MH; Kersten RD
    Nat Chem Biol; 2022 Jan; 18(1):18-28. PubMed ID: 34811516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial Metalloenzymes on the Verge of New-to-Nature Metabolism.
    Jeschek M; Panke S; Ward TR
    Trends Biotechnol; 2018 Jan; 36(1):60-72. PubMed ID: 29061328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper chaperones: personal escorts for metal ions.
    Field LS; Luk E; Culotta VC
    J Bioenerg Biomembr; 2002 Oct; 34(5):373-9. PubMed ID: 12539964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Receptor-Based Artificial Metalloenzymes on Living Human Cells.
    Ghattas W; Dubosclard V; Wick A; Bendelac A; Guillot R; Ricoux R; Mahy JP
    J Am Chem Soc; 2018 Jul; 140(28):8756-8762. PubMed ID: 29909636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [A novel method for efficient screening and annotation of important pathway-associated metabolites based on the modified metabolome and probe molecules].
    Li Z; Zheng F; Xia Y; Zhang X; Wang X; Zhao C; Zhao X; Lu X; Xu G
    Se Pu; 2022 Sep; 40(9):788-796. PubMed ID: 36156625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Vivo Assembly of Artificial Metalloenzymes and Application in Whole-Cell Biocatalysis*.
    Chordia S; Narasimhan S; Lucini Paioni A; Baldus M; Roelfes G
    Angew Chem Int Ed Engl; 2021 Mar; 60(11):5913-5920. PubMed ID: 33428816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LmrR: A Privileged Scaffold for Artificial Metalloenzymes.
    Roelfes G
    Acc Chem Res; 2019 Mar; 52(3):545-556. PubMed ID: 30794372
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial enzymes for lignin depolymerisation: new biocatalysts for generation of renewable chemicals from biomass.
    Bugg TDH; Williamson JJ; Rashid GMM
    Curr Opin Chem Biol; 2020 Apr; 55():26-33. PubMed ID: 31918394
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of a vacuole-localized BURP-domain protein from soybean (SALI3-2) enhances tolerance to cadmium and copper stresses.
    Tang Y; Cao Y; Gao Z; Ou Z; Wang Y; Qiu J; Zheng Y
    PLoS One; 2014; 9(6):e98830. PubMed ID: 24901737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directed evolution of artificial metalloenzymes for in vivo metathesis.
    Jeschek M; Reuter R; Heinisch T; Trindler C; Klehr J; Panke S; Ward TR
    Nature; 2016 Sep; 537(7622):661-665. PubMed ID: 27571282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale copper in the soil-plant system - toxicity and underlying potential mechanisms.
    Anjum NA; Adam V; Kizek R; Duarte AC; Pereira E; Iqbal M; Lukatkin AS; Ahmad I
    Environ Res; 2015 Apr; 138():306-25. PubMed ID: 25749126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper-binding peptides from human prion protein and newly designed peroxidative biocatalysts.
    Kagenishi T; Yokawa K; Kadono T; Uezu K; Kawano T
    Z Naturforsch C J Biosci; 2011; 66(3-4):182-90. PubMed ID: 21630593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aromatic metabolism of filamentous fungi in relation to the presence of aromatic compounds in plant biomass.
    Mäkelä MR; Marinović M; Nousiainen P; Liwanag AJ; Benoit I; Sipilä J; Hatakka A; de Vries RP; Hildén KS
    Adv Appl Microbiol; 2015; 91():63-137. PubMed ID: 25911233
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laccase versus laccase-like multi-copper oxidase: a comparative study of similar enzymes with diverse substrate spectra.
    Reiss R; Ihssen J; Richter M; Eichhorn E; Schilling B; Thöny-Meyer L
    PLoS One; 2013; 8(6):e65633. PubMed ID: 23755261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the Fast and Promiscuous Macrocyclase from Plant PCY1 Enables the Use of Simple Substrates.
    Ludewig H; Czekster CM; Oueis E; Munday ES; Arshad M; Synowsky SA; Bent AF; Naismith JH
    ACS Chem Biol; 2018 Mar; 13(3):801-811. PubMed ID: 29377663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative proteomics analysis by DIGE and iTRAQ provides insight into the regulation of phenylpropanoids in maize.
    Robbins ML; Roy A; Wang PH; Gaffoor I; Sekhon RS; de O Buanafina MM; Rohila JS; Chopra S
    J Proteomics; 2013 Nov; 93():254-75. PubMed ID: 23811284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Developments in the Biosynthesis of Cu-Based Recyclable Nanocatalysts Using Plant Extracts and their Application in the Chemical Reactions.
    Nasrollahzadeh M; Ghorbannezhad F; Issaabadi Z; Sajadi SM
    Chem Rec; 2019 Feb; 19(2-3):601-643. PubMed ID: 30230690
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unraveling the Chemistry of High Valent Arylcopper Compounds and Their Roles in Copper-Catalyzed Arene C-H Bond Transformations Using Synthetic Macrocycles.
    Zhang Q; Tong S; Wang MX
    Acc Chem Res; 2022 Oct; 55(19):2796-2810. PubMed ID: 35994690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid schemes based on quantum mechanics/molecular mechanics simulations goals to success, problems, and perspectives.
    Ferrer S; Ruiz-Pernía J; Martí S; Moliner V; Tuñón I; Bertrán J; Andrés J
    Adv Protein Chem Struct Biol; 2011; 85():81-142. PubMed ID: 21920322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.