These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 34925424)

  • 1. A Deep Learning Method for Fully Automatic Stomatal Morphometry and Maximal Conductance Estimation.
    Gibbs JA; Mcausland L; Robles-Zazueta CA; Murchie EH; Burgess AJ
    Front Plant Sci; 2021; 12():780180. PubMed ID: 34925424
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Deep Learning-Based Method for Automatic Assessment of Stomatal Index in Wheat Microscopic Images of Leaf Epidermis.
    Zhu C; Hu Y; Mao H; Li S; Li F; Zhao C; Luo L; Liu W; Yuan X
    Front Plant Sci; 2021; 12():716784. PubMed ID: 34539710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring natural genetic diversity in a bread wheat multi-founder population: Dual imaging of photosynthesis and stomatal kinetics.
    Faralli M; Mellers G; Wall S; Vialet-Chabrand S; Forget G; Galle A; Van Rie J; Gardner KA; Ober ES; Cockram J; Lawson T
    J Exp Bot; 2024 May; ():. PubMed ID: 38795361
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microscope image based fully automated stomata detection and pore measurement method for grapevines.
    Jayakody H; Liu S; Whitty M; Petrie P
    Plant Methods; 2017; 13():94. PubMed ID: 29151841
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An integrated model of stomatal development and leaf physiology.
    Dow GJ; Bergmann DC; Berry JA
    New Phytol; 2014 Mar; 201(4):1218-1226. PubMed ID: 24251982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid non-destructive method to phenotype stomatal traits.
    Pathoumthong P; Zhang Z; Roy SJ; El Habti A
    Plant Methods; 2023 Mar; 19(1):36. PubMed ID: 37004073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Application of deep learning for the analysis of stomata: A review of current methods and future directions.
    Gibbs JA; Burgess AJ
    J Exp Bot; 2024 May; ():. PubMed ID: 38716775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. StomataScorer: a portable and high-throughput leaf stomata trait scorer combined with deep learning and an improved CV model.
    Liang X; Xu X; Wang Z; He L; Zhang K; Liang B; Ye J; Shi J; Wu X; Dai M; Yang W
    Plant Biotechnol J; 2022 Mar; 20(3):577-591. PubMed ID: 34717024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leaf anatomy mediates coordination of leaf hydraulic conductance and mesophyll conductance to CO
    Xiong D; Flexas J; Yu T; Peng S; Huang J
    New Phytol; 2017 Jan; 213(2):572-583. PubMed ID: 27653809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The physiological importance of developmental mechanisms that enforce proper stomatal spacing in Arabidopsis thaliana.
    Dow GJ; Berry JA; Bergmann DC
    New Phytol; 2014 Mar; 201(4):1205-1217. PubMed ID: 24206523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From leaf to label: A robust automated workflow for stomata detection.
    Meeus S; Van den Bulcke J; Wyffels F
    Ecol Evol; 2020 Sep; 10(17):9178-9191. PubMed ID: 32953053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Integrated Method for Tracking and Monitoring Stomata Dynamics from Microscope Videos.
    Sun Z; Song Y; Li Q; Cai J; Wang X; Zhou Q; Huang M; Jiang D
    Plant Phenomics; 2021; 2021():9835961. PubMed ID: 34250505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic segmentation and measurement methods of living stomata of plants based on the CV model.
    Li K; Huang J; Song W; Wang J; Lv S; Wang X
    Plant Methods; 2019; 15():67. PubMed ID: 31303890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic Stomatal Segmentation Based on Delaunay-Rayleigh Frequency Distance.
    Carrasco M; Toledo PA; Velázquez R; Bruno OM
    Plants (Basel); 2020 Nov; 9(11):. PubMed ID: 33233729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of stomata clustering on leaf gas exchange.
    Lehmann P; Or D
    New Phytol; 2015 Sep; 207(4):1015-25. PubMed ID: 25967110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative effects of environmental variation on stomatal anatomy and gas exchange in a grass model.
    Nunes TDG; Slawinska MW; Lindner H; Raissig MT
    Quant Plant Biol; 2022; 3():e6. PubMed ID: 37077975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. StomataCounter: a neural network for automatic stomata identification and counting.
    Fetter KC; Eberhardt S; Barclay RS; Wing S; Keller SR
    New Phytol; 2019 Aug; 223(3):1671-1681. PubMed ID: 31059134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated estimation of stomatal number and aperture in haskap (Lonicera caerulea L.).
    Meng X; Nakano A; Hoshino Y
    Planta; 2023 Sep; 258(4):77. PubMed ID: 37673805
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stomatal Conductance and Morphology of Arbuscular Mycorrhizal Wheat Plants Response to Elevated CO
    Zhu X; Cao Q; Sun L; Yang X; Yang W; Zhang H
    Front Plant Sci; 2018; 9():1363. PubMed ID: 30283478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disruption of stomatal lineage signaling or transcriptional regulators has differential effects on mesophyll development, but maintains coordination of gas exchange.
    Dow GJ; Berry JA; Bergmann DC
    New Phytol; 2017 Oct; 216(1):69-75. PubMed ID: 28833173
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.