These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Stability analysis for a class of implicit fractional differential equations involving Atangana-Baleanu fractional derivative. Asma ; Shabbir S; Shah K; Abdeljawad T Adv Differ Equ; 2021; 2021(1):395. PubMed ID: 34456987 [TBL] [Abstract][Full Text] [Related]
3. Analysis of a novel coronavirus (2019-nCOV) system with variable Caputo-Fabrizio fractional order. Verma P; Kumar M Chaos Solitons Fractals; 2021 Jan; 142():110451. PubMed ID: 33519113 [TBL] [Abstract][Full Text] [Related]
4. Analysis of mathematical model involving nonlinear systems of Caputo-Fabrizio fractional differential equation. Kebede SG; Lakoud AG Bound Value Probl; 2023; 2023(1):44. PubMed ID: 37096017 [TBL] [Abstract][Full Text] [Related]
5. Differential equations of arbitrary order under Caputo-Fabrizio derivative: some existence results and study of stability. Maazouz K; Rodríguez-López R Math Biosci Eng; 2022 Apr; 19(6):6234-6251. PubMed ID: 35603399 [TBL] [Abstract][Full Text] [Related]
6. On the solution and Ulam-Hyers-Rassias stability of a Caputo fractional boundary value problem. Castro LP; Silva AS Math Biosci Eng; 2022 Jul; 19(11):10809-10825. PubMed ID: 36124570 [TBL] [Abstract][Full Text] [Related]
7. Efficient results on fractional Langevin-Sturm-Liouville problem via generalized Caputo-Atangana-Baleanu derivatives. Thabet STM; Boutiara A; Samei ME; Kedim I; Vivas-Cortez M PLoS One; 2024; 19(10):e0311141. PubMed ID: 39356680 [TBL] [Abstract][Full Text] [Related]
8. Existence and uniqueness results for fractional Langevin equations on a star graph. Zhang W; Zhang J; Ni J Math Biosci Eng; 2022 Jul; 19(9):9636-9657. PubMed ID: 35942776 [TBL] [Abstract][Full Text] [Related]
9. Investigation on integro-differential equations with fractional boundary conditions by Atangana-Baleanu-Caputo derivative. Harisa SA; Faried N; Vijayaraj V; Ravichandran C; Morsy A PLoS One; 2024; 19(5):e0301338. PubMed ID: 38820319 [TBL] [Abstract][Full Text] [Related]
10. Caputo Fractal Fractional Order Derivative of Soil Pollution Model Due to Industrial and Agrochemical. Priya P; Sabarmathi A Int J Appl Comput Math; 2022; 8(5):250. PubMed ID: 36091873 [TBL] [Abstract][Full Text] [Related]
11. Stability analysis of multi-point boundary conditions for fractional differential equation with non-instantaneous integral impulse. Li G; Zhang Y; Guan Y; Li W Math Biosci Eng; 2023 Feb; 20(4):7020-7041. PubMed ID: 37161139 [TBL] [Abstract][Full Text] [Related]
12. Investigation of a time-fractional COVID-19 mathematical model with singular kernel. Adnan ; Ali A; Ur Rahmamn M; Shah Z; Kumam P Adv Contin Discret Model; 2022; 2022(1):34. PubMed ID: 35462615 [TBL] [Abstract][Full Text] [Related]
13. Analysis of the human liver model through semi-analytical and numerical techniques with non-singular kernel. Akshey ; Singh TR Comput Methods Biomech Biomed Engin; 2024 Mar; ():1-13. PubMed ID: 38556900 [TBL] [Abstract][Full Text] [Related]
14. Time-fractional Caputo derivative versus other integrodifferential operators in generalized Fokker-Planck and generalized Langevin equations. Wei Q; Wang W; Zhou H; Metzler R; Chechkin A Phys Rev E; 2023 Aug; 108(2-1):024125. PubMed ID: 37723675 [TBL] [Abstract][Full Text] [Related]
15. Mathematical analysis of an extended SEIR model of COVID-19 using the ABC-fractional operator. Sintunavarat W; Turab A Math Comput Simul; 2022 Aug; 198():65-84. PubMed ID: 35194306 [TBL] [Abstract][Full Text] [Related]
16. Stability analysis and solutions of fractional boundary value problem on the cyclopentasilane graph. Wang G; Yuan H; Baleanu D Heliyon; 2024 Jun; 10(12):e32411. PubMed ID: 38975069 [TBL] [Abstract][Full Text] [Related]
17. Analysis of fractal-fractional Alzheimer's disease mathematical model in sense of Caputo derivative. Yadav P; Jahan S; Nisar KS AIMS Public Health; 2024; 11(2):399-419. PubMed ID: 39027396 [TBL] [Abstract][Full Text] [Related]
18. On a comprehensive model of the novel coronavirus (COVID-19) under Mittag-Leffler derivative. Abdo MS; Shah K; Wahash HA; Panchal SK Chaos Solitons Fractals; 2020 Jun; 135():109867. PubMed ID: 32390692 [TBL] [Abstract][Full Text] [Related]
19. Analysis of Caputo fractional-order model for COVID-19 with lockdown. Ahmed I; Baba IA; Yusuf A; Kumam P; Kumam W Adv Differ Equ; 2020; 2020(1):394. PubMed ID: 32834819 [TBL] [Abstract][Full Text] [Related]
20. Solution of a COVID-19 model via new generalized Caputo-type fractional derivatives. Erturk VS; Kumar P Chaos Solitons Fractals; 2020 Oct; 139():110280. PubMed ID: 32982080 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]