BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 34925644)

  • 1. A Comprehensive Bioinformatic Analysis of NOTCH Pathway Involvement in Stomach Adenocarcinoma.
    Xue D; Li D; Dou C; Li J
    Dis Markers; 2021; 2021():4739868. PubMed ID: 34925644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Construction of mRNA prognosis signature associated with differentially expressed genes in early stage of stomach adenocarcinomas based on TCGA and GEO datasets.
    Jiang F; Lin H; Yan H; Sun X; Yang J; Dong M
    Eur J Med Res; 2022 Oct; 27(1):205. PubMed ID: 36253873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of potential targets of triptolide in regulating the tumor microenvironment of stomach adenocarcinoma patients using bioinformatics.
    Qiu H; Zhang X; Yu H; Gao R; Shi J; Shen T
    Bioengineered; 2021 Dec; 12(1):4304-4319. PubMed ID: 34348580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Angiogenesis-related lncRNAs predict the prognosis signature of stomach adenocarcinoma.
    Han C; Zhang C; Wang H; Li K; Zhao L
    BMC Cancer; 2021 Dec; 21(1):1312. PubMed ID: 34876056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FN1, SPARC, and SERPINE1 are highly expressed and significantly related to a poor prognosis of gastric adenocarcinoma revealed by microarray and bioinformatics.
    Li L; Zhu Z; Zhao Y; Zhang Q; Wu X; Miao B; Cao J; Fei S
    Sci Rep; 2019 May; 9(1):7827. PubMed ID: 31127138
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of prognosis-related genes in the tumor microenvironment of stomach adenocarcinoma by TCGA and GEO datasets.
    Ren N; Liang B; Li Y
    Biosci Rep; 2020 Oct; 40(10):. PubMed ID: 33015704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The prognostic and antitumor roles of key genes of ferroptosis in liver hepatocellular cancer and stomach adenocarcinoma.
    Pei W; Jiang M; Liu H; Song J; Hu J
    Cancer Biomark; 2024; 39(4):335-347. PubMed ID: 38393890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bioinformatics analysis identifies coagulation factor II receptor as a potential biomarker in stomach adenocarcinoma.
    Wu X; Wang S; Wang C; Wu C; Zhao Z
    Sci Rep; 2024 Jan; 14(1):2468. PubMed ID: 38291086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screening lncRNAs with diagnostic and prognostic value for human stomach adenocarcinoma based on machine learning and mRNA-lncRNA co-expression network analysis.
    Li Q; Liu X; Gu J; Zhu J; Wei Z; Huang H
    Mol Genet Genomic Med; 2020 Nov; 8(11):e1512. PubMed ID: 33002344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of aberrantly expressed long non-coding RNAs in stomach adenocarcinoma.
    Gu J; Li Y; Fan L; Zhao Q; Tan B; Hua K; Wu G
    Oncotarget; 2017 Jul; 8(30):49201-49216. PubMed ID: 28484081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioinformatic Analysis of GLI1 and Related Signaling Pathways in Chemosensitivity of Gastric Cancer.
    Yu T; Jia W; An Q; Cao X; Xiao G
    Med Sci Monit; 2018 Mar; 24():1847-1855. PubMed ID: 29596399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and Construction of a Long Noncoding RNA Prognostic Risk Model for Stomach Adenocarcinoma Patients.
    Zha Z; Zhang P; Li D; Liu G; Lu L
    Dis Markers; 2021; 2021():8895723. PubMed ID: 33680217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. WGCNA identification of TLR7 as a novel diagnostic biomarker, progression and prognostic indicator, and immunotherapeutic target for stomach adenocarcinoma.
    Yuan Q; Zhou Q; Ren J; Wang G; Yin C; Shang D; Xia S
    Cancer Med; 2021 Jun; 10(12):4004-4016. PubMed ID: 33982398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Data mining combines bioinformatics discover immunoinfiltration-related gene SERPINE1 as a biomarker for diagnosis and prognosis of stomach adenocarcinoma.
    Zhai Y; Liu X; Huang Z; Zhang J; Stalin A; Tan Y; Zhang F; Chen M; Shi R; Huang J; Wu C; Wu Z; Lu S; You L; Wu J
    Sci Rep; 2023 Jan; 13(1):1373. PubMed ID: 36697459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and validation of an immune-related gene prognostic model for stomach adenocarcinoma.
    Wu M; Xia Y; Wang Y; Fan F; Li X; Song J; Ding J
    Biosci Rep; 2020 Oct; 40(10):. PubMed ID: 33112406
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential Notch1 and Notch2 expression and frequent activation of Notch signaling in gastric cancers.
    Sun Y; Gao X; Liu J; Kong QY; Wang XW; Chen XY; Wang Q; Cheng YF; Qu XX; Li H
    Arch Pathol Lab Med; 2011 Apr; 135(4):451-8. PubMed ID: 21466361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 9‑gene expression signature to predict stage development in resectable stomach adenocarcinoma.
    Liu Z; Liu H; Wang Y; Li Z
    BMC Gastroenterol; 2022 Oct; 22(1):435. PubMed ID: 36241983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prognostic values of GPNMB identified by mining TCGA database and STAD microenvironment.
    Yao K; Wei L; Zhang J; Wang C; Wang C; Qin C; Li S
    Aging (Albany NY); 2020 Aug; 12(16):16238-16254. PubMed ID: 32833670
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated bioinformatics analysis for differentially expressed genes and signaling pathways identification in gastric cancer.
    Yang C; Gong A
    Int J Med Sci; 2021; 18(3):792-800. PubMed ID: 33437215
    [No Abstract]   [Full Text] [Related]  

  • 20. A Comprehensive Bioinformatics Analysis of Notch Pathways in Bladder Cancer.
    Zhang C; Berndt-Paetz M; Neuhaus J
    Cancers (Basel); 2021 Jun; 13(12):. PubMed ID: 34205690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.