These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 349262)
21. Comparison of four membranes for artificially bloodfeeding mosquitoes. Novak MG; Berry WJ; Rowley WA J Am Mosq Control Assoc; 1991 Jun; 7(2):327-9. PubMed ID: 1680153 [TBL] [Abstract][Full Text] [Related]
22. Studies with equine infectious anemia virus: transmission attempts by mosquitoes and survival of virus on vector mouthparts and hypodermic needles, and in mosquito tissue culture. Williams DL; Issel CJ; Steelman CD; Adams WV; Benton CV Am J Vet Res; 1981 Sep; 42(9):1469-73. PubMed ID: 6119953 [TBL] [Abstract][Full Text] [Related]
23. Three indigenous Thai medicinal plants for control of Aedes aegypti and Culex quinquefasciatus. Lapcharoen P; Apiwathnasorn C; Komalamisra N; Dekumyoy P; Palakul K; Rongsriyam Y Southeast Asian J Trop Med Public Health; 2005; 36 Suppl 4():167-75. PubMed ID: 16438204 [TBL] [Abstract][Full Text] [Related]
24. Detection of viable Mycobacterium leprae in soil samples: insights into possible sources of transmission of leprosy. Lavania M; Katoch K; Katoch VM; Gupta AK; Chauhan DS; Sharma R; Gandhi R; Chauhan V; Bansal G; Sachan P; Sachan S; Yadav VS; Jadhav R Infect Genet Evol; 2008 Sep; 8(5):627-31. PubMed ID: 18599381 [TBL] [Abstract][Full Text] [Related]
25. Leprosy and arthropods. Sreevatsa Indian J Lepr; 1993; 65(2):189-200. PubMed ID: 8102161 [No Abstract] [Full Text] [Related]
26. Laboratory evaluation of 18 repellent compounds as oviposition deterrents of Aedes albopictus and as larvicides of Aedes aegypti, Anopheles quadrimaculatus, and Culex quinquefasciatus. Xue RD; Barnard DR; Ali A J Am Mosq Control Assoc; 2003 Dec; 19(4):397-403. PubMed ID: 14710743 [TBL] [Abstract][Full Text] [Related]
27. How to prevent immunological reactions in leprosy patients and interrupt transmission of Mycobacterium leprae to healthy subjects: two hypotheses. Mastrangelo G; Marcer G; Cegolon L; Buja A; Fadda E; Scoizzato L; Pavanello S Med Hypotheses; 2008 Oct; 71(4):551-63. PubMed ID: 18614293 [TBL] [Abstract][Full Text] [Related]
28. Distribution and seasonality of vertically transmitted dengue viruses in Aedes mosquitoes in arid and semi-arid areas of Rajasthan, India. Angel B; Joshi V J Vector Borne Dis; 2008 Mar; 45(1):56-9. PubMed ID: 18399318 [TBL] [Abstract][Full Text] [Related]
29. New dimensions in our understanding of the transmission of leprosy and their impact on priorities in leprosy control. Davey TF Lepr India; 1980 Jan; 52(1):104-13. PubMed ID: 6991810 [No Abstract] [Full Text] [Related]
30. A preliminary study on in vitro transmission of Dirofilaria immitis infective stage larvae by Aedes aegypti (L.) (Diptera: Culicidae). Tiawsirisup S; Khlaikhayai T; Nithiuthai S Southeast Asian J Trop Med Public Health; 2005; 36 Suppl 4():86-9. PubMed ID: 16438186 [TBL] [Abstract][Full Text] [Related]
31. [Detection of Infusoria Tetrahymena stegomyiae (Keilin) in the larvae of Culex pipiens molestus and Aedes aegypti]. Dzerzhinskiĭ VA; Dubitskiĭ AM; Nam EA; Lopatin OE Med Parazitol (Mosk); 1976; 45(5):616-7. PubMed ID: 1025470 [No Abstract] [Full Text] [Related]
32. Seasonality, prevalence and pathogenicity of the gregarine Ascogregarina taiwanensis (Apicomplexa: Lecudinidae) in mosquitoes from Florida. Garcia JJ; Fukuda T; Becnel JJ J Am Mosq Control Assoc; 1994 Sep; 10(3):413-8. PubMed ID: 7807086 [TBL] [Abstract][Full Text] [Related]
33. [Studies on the heredity of susceptibility to the canine filaria, Dirofilaria immitis, in Culex pipiens fatigans and Aedes aegypti]. Zielke E Z Tropenmed Parasitol; 1973 Mar; 24(1):36-44. PubMed ID: 4733216 [No Abstract] [Full Text] [Related]
34. On the escape of infective filarial larvae from the mosquitoes. Zielke E Tropenmed Parasitol; 1977 Dec; 28(4):461-6. PubMed ID: 601855 [TBL] [Abstract][Full Text] [Related]
35. C-reactive protein and apoB containing lipoproteins are associated with Mycobacterium leprae in lesions of human leprosy. Ridley MJ; Ridley DS; De Beer FC; Pepys MB Clin Exp Immunol; 1984 Jun; 56(3):545-52. PubMed ID: 6378453 [TBL] [Abstract][Full Text] [Related]
36. Effect of the insect growth regulator methoprene on the ovipositional behavior of Aedes aegypti and Culex quinquefasciatus. Beehler JW; Mulla MS J Am Mosq Control Assoc; 1993 Mar; 9(1):13-6. PubMed ID: 8468569 [TBL] [Abstract][Full Text] [Related]
37. Discharge of Mycobacterium leprae from the mouth in lepromatous leprosy patients. Hubscher S; Girdhar BK; Desikan KV Lepr Rev; 1979 Mar; 50(1):45-50. PubMed ID: 370480 [No Abstract] [Full Text] [Related]
38. The role of free-living pathogenic amoeba in the transmission of leprosy: a proof of principle. Lahiri R; Krahenbuhl JL Lepr Rev; 2008 Dec; 79(4):401-9. PubMed ID: 19274986 [TBL] [Abstract][Full Text] [Related]
39. Evaluation of EMD vaporizers and bioallethrin vaporizing mats against mosquito vectors. Amalraj DD; Kalyanasundaram M; Das PK Southeast Asian J Trop Med Public Health; 1992 Sep; 23(3):474-8. PubMed ID: 1488702 [TBL] [Abstract][Full Text] [Related]
40. Persistency of transovarial dengue virus in Aedes aegypti (Linn.). Rohani A; Zamree I; Joseph RT; Lee HL Southeast Asian J Trop Med Public Health; 2008 Sep; 39(5):813-6. PubMed ID: 19058573 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]